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ON SLANT RIEMANNIAN SUBMERSIONS FOR

COSYMPLECTIC MANIFOLDS

İrem Küpeli Erken and Cengizhan Murathan

Abstract. In this paper, we introduce slant Riemannian submersions
from cosymplectic manifolds onto Riemannian manifolds. We obtain
some results on slant Riemannian submersions of a cosymplectic man-
ifold. We also give examples and inequalities between the scalar curva-
ture and squared mean curvature of fibres of such slant submersions in
the cases where the characteristic vector field is vertical or horizontal.

1. Introduction

Riemannian submersions were introduced in the sixties by B. O’Neill and

A. Gray (see [9], [20]) as a tool to study the geometry of a Riemannian man-

ifold with an additional structure in terms of certain components, that is, the

fibers and the base space. The Riemannian submersions are of great interest

both in mathematics and physics, owing to their applications in the Yang-Mills

theory ([3], [30]), Kaluza-Klein theory ([4], [12]), supergravity and superstring

theories ([13], [18]), etc. Riemannian submersions were considered between al-

most complex manifolds by Watson in [29] under the name of almost Hermitian

submersion. For Riemannian submersions between almost contact manifolds,

Chinea [7] studied under the name of almost contact submersions. Further,

B. Şahin [24] introduced a kind of submersion which was defined from almost

Hermitian manifolds to any Riemannian manifolds. Recently there are several

kinds of submersions according to the conditions on it: e.g., contact-complex

submersion [10], quaternionic submersion [11], almost h-slant submersion and

h-slant submersion [22], semi-invariant submersion [27], h-semi-invariant sub-

mersion [23], etc.

On the other hand, the study of slant submanifolds was initiated by B.

Y. Chen in [6]. In [24], B. Şahin studied slant submersions from an almost

Hermitian manifold to a Riemannian manifold and generalized his results which
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were given in [25]. He also suggested to investigate slant submersions from

almost contact metric manifolds onto Riemannian manifolds [26].

In this paper, we consider slant Riemannian submersions from cosymplec-

tic manifolds. We obtain some results on slant Riemannian submersions of a

cosymplectic manifolds.

The paper is organized in the following way. In Section 2, we recall some

notions needed for this paper. Section 3 deals with cosymplectic manifolds. In

Section 4, we give definition of slant Riemannian submersions and introduce

slant Riemannian submersions from cosymplectic manifolds onto Riemannian

manifolds. We survey main results of slant submersions defined on cosymplec-

tic manifolds and obtain some interesting properties about them. We construct

examples of slant submersions in the cases where the characteristic vector field

ξ is vertical or horizontal. We give a sufficient condition for a slant Riemann-

ian submersion from cosymplectic manifolds onto Riemannian manifolds to be

harmonic. Moreover, we investigate the geometry of leaves of (kerF∗) and

(kerF∗)
⊥. Here, we find a necessary and sufficient condition for a slant Rie-

mannian submersion to be totally geodesic. We give sharp inequalities between

the scalar curvature and squared mean curvature of fibres such that character-

istic vector field ξ is vertical or horizontal. Moreover, we know that the anti-

invariant submersions are special slant submersions with slant angle θ = π
2
.

We investigated such a submersions in [17]. Especially, we give some addi-

tional results for anti-invariant submersions from a cosymplectic manifold to a

Riemannian manifold such that (kerF∗)
⊥ =φ(ker(F∗))⊕ {ξ}.

2. Riemannian submersions

In this section we recall several notions and results which will be needed

throughout the paper.

Let (M, gM ) be an m-dimensional Riemannian manifold and let (N, gN ) be

an n-dimensional Riemannian manifold. A Riemannian submersion is a smooth

map F : M → N which is onto and satisfying the following axioms:

S1. F has maximal rank.

S2. The differential F∗ preserves the lengths of horizontal vectors.

The fundamental tensors of a submersion were defined by O’Neill ([20], [21]).

They are (1, 2)-tensors on M , given by the following formulas:

T (E,F ) = TEF = H∇VEVF + V∇VEHF,(2.1)

A(E,F ) = AEF = V∇HEHF +H∇HEVF,(2.2)

for any vector fields E and F onM. Here ∇ denotes the Levi-Civita connection

of (M, gM ). These tensors are called integrability tensors for the Riemannian

submersions. Note that we denote the projection morphism on the distributions

kerF∗ and (kerF∗)
⊥ by V and H, respectively. The following lemmas are well

known ([20], [21]):
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Lemma 1. For any U,W vertical and X,Y horizontal vector fields, the tensor

fields T and A satisfy

i) TUW = TWU,(2.3)

ii) AXY = −AYX =
1

2
V [X,Y ] .(2.4)

It is easy to see that T is vertical, TE = TVE , and A is horizontal, A = AHE .

For each q ∈ N, F−1(q) is an (m− n)-dimensional submanifold of M . The

submanifolds F−1(q), q ∈ N, are called fibers. A vector field on M is called

vertical if it is always tangent to fibers. A vector field onM is called horizontal

if it is always orthogonal to fibers. A vector field X on M is called basic if X

is horizontal and F -related to a vector field X on N, i.e., F∗Xp = X∗F (p) for

all p ∈M.

Lemma 2. Let F : (M, gM ) → (N, gN ) be a Riemannian submersion. If X, Y

are basic vector fields on M , then

i) gM (X,Y ) = gN (X∗, Y∗) ◦ F,
ii) H[X,Y ] is basic and F -related to [X∗, Y∗],

iii) H(∇XY ) is a basic vector field corresponding to ∇∗

X
∗

Y∗, where ∇∗ is the

connection on N.

iv) for any vertical vector field V , [X,V ] is vertical.

Moreover, if X is basic and U is vertical, then H(∇UX) = H(∇XU) = AXU.

On the other hand, from (2.1) and (2.2) we have

∇VW = TVW + ∇̂VW,(2.5)

∇VX = H∇VX + TVX,(2.6)

∇XV = AXV + V∇XV,(2.7)

∇XY = H∇XY +AXY,(2.8)

for X,Y ∈ Γ((kerF∗)
⊥) and V,W ∈ Γ(kerF∗), where ∇̂VW = V∇VW. On any

fibre F−1(q), q ∈ N , ∇̂ coincides with the Levi-Civita connection with respect

to the metric induced by gM . This induced metric on fibre F−1(q) is denoted

by ĝ.

Notice that T acts on the fibres as the second fundamental form of the sub-

mersion and restricted to vertical vector fields and it can be easily seen that

T = 0 is equivalent to the condition that the fibres are totally geodesic. A Rie-

mannian submersion is called a Riemannian submersion with totally geodesic

fibers if T vanishes identically. Let U1, . . . , Um−n be an orthonormal frame

of Γ(kerF∗). Then the horizontal vector field H = 1
m−n

∑m−n
j=1 TUj

Uj is called

the mean curvature vector field of the fiber. If H = 0, then the Riemann-

ian submersion is said to be minimal. A Riemannian submersion is called a

Riemannian submersion with totally umbilical fibers if

(2.9) TUW = gM (U,W )H
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for U,W ∈ Γ(kerF∗). For any E ∈ Γ(TM), TE and AE are skew-symmetric

operators on (Γ(TM), gM) reversing the horizontal and the vertical distribu-

tions. By Lemma 1, horizontal distribution H is integrable if and only if A = 0.

For any D,E,G ∈ Γ(TM), one has

(2.10) g(TDE,G) + g(TDG,E) = 0

and

(2.11) g(ADE,G) + g(ADG,E) = 0.

The tensor fieldsA, T and their covariant derivatives play a fundamental role in

expressing the Riemannian curvatureR of (M, g). By (2.5) and (2.6), B. O’Neill

[20] gave

R(S,W, V, U) = g(R(S,W )V, U)(2.12)

= R̂(S,W, V, U) + g(TUW, TV S)− g(TVW, TUS),

where R̂ is Riemannian curvature tensor of any fibre (F−1(q), ĝq). Precisely, if

{U, V } is an orthonormal basis of the vertical 2-plane, then the equation (2.12)

implies that

(2.13) K(U ∧ V ) = K̂(U ∧ V )+ ‖ TUV ‖2 −g(TUU, TV V ),

where K and K̂ denote the sectional curvature of M and fibre F−1(q), respec-

tively. Moreover, the following formula was stated in [20]

R(Y,W, V,X) = g((∇XT )(V,W ), Y ) + g((∇VA)(X,Y ),W )(2.14)

− g(TVX, TWY ) + g(AXV,AYW )

for any X,Y, Z ∈ Γ((kerF∗)
⊥), V,W ∈ Γ(kerF∗).

We recall the notion of harmonic maps between Riemannian manifolds. Let

(M, gM ) and (N, gN ) be Riemannian manifolds and suppose that ϕ : M → N

is a smooth map between them. Then the differential ϕ∗ of ϕ can be viewed as

a section of the bundle Hom(TM,ϕ−1TN) →M, where ϕ−1TN is the pullback

bundle which has fibres (ϕ−1TN)p = Tϕ(p)N, p ∈ M . Hom(TM,ϕ−1TN) has

a connection ∇ induced from the Levi-Civita connection ∇M and the pullback

connection. Then the second fundamental form of ϕ is given by

(2.15) (∇ϕ∗)(X,Y ) = ∇ϕ
Xϕ∗(Y )− ϕ∗(∇M

X Y )

for X,Y ∈ Γ(TM), where ∇ϕ is the pullback connection. It is known that the

second fundamental form is symmetric. If ϕ is a Riemannian submersion, it

can be easily proved that

(2.16) (∇ϕ∗)(X,Y ) = 0

for X,Y ∈ Γ((kerF∗)
⊥). A smooth map ϕ : (M, gM ) → (N, gN ) is said to be

harmonic if trace(∇ϕ∗) = 0. On the other hand, the tension field of ϕ is the
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section τ (ϕ) of Γ(ϕ−1TN) defined by

(2.17) τ (ϕ) = divϕ∗ =

m
∑

i=1

(∇ϕ∗)(ei, ei),

where {e1, . . . , em} is the orthonormal frame on M . Then it follows that ϕ is

harmonic if and only if τ (ϕ) = 0; for details, see [1].

3. Cosymplectic manifolds

A (2m+ 1)-dimensional C∞-manifold M is said to have an almost contact

structure if there exist a tensor field φ of type (1, 1) on M , a vector field ξ and

1-form η satisfying

(3.1) φ
2 = −I + η ⊗ ξ, φξ = 0, η ◦ φ = 0, η(ξ) = 1.

There always exists a Riemannian metric g on an almost contact manifold M

satisfying the following conditions

(3.2) g(φX, φY ) = g(X,Y )− η(X)η(Y ), η(X) = g(X, ξ),

where X,Y are vector fields on M.

An almost contact structure (φ, ξ, η) is said to be normal if the almost com-

plex structure J on the product manifold M ×R is given by

J(X, f
d

dt
) = (φX − fξ, η(X)

d

dt
),

where f is the C∞-function on M ×R has no torsion, i.e., J is integrable. The

condition for normality in terms of φ, ξ and η is [φ, φ] + 2dη ⊗ ξ = 0 on M ,

where [φ, φ] is the Nijenhuis tensor of φ. Finally, the fundamental 2-form Φ is

defined by Φ(X,Y ) = g(X,φY ).

An almost contact metric structure (φ, ξ, η, g) is said to be cosymplectic, if

it is normal and both Φ and η are closed ([2], [16]), and the structure equation

of a cosymplectic manifold is given by

(3.3) (∇Eφ)G = 0

for any E,G tangent toM, where ∇ denotes the Riemannian connection of the

metric g on M. Moreover, for a cosymplectic manifold, we know that

(3.4) ∇Eξ = 0.

The φ-sectional curvature of a cosymplectic manifold M is defined for any unit

vector E on M orthogonal to ξ by the formula

(3.5) H(E) = g(R(E, φE)φE,E).

If a cosymplectic manifold M has φ-sectional curvature c, then M is called a

cosymplectic space form and denoted by M(c), [31]. So the curvature tensor R

of a cosymplectic space form M(c) is given by

R(X,Y )Z =
c

4
(g(Y, Z)X − g(X,Z)Y + η(X)η(Z)Y − η(Y )η(Z)X

(3.6)
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+ g(X,Z)η(Y )ξ)

− g(Y, Z)η(X)ξ + g(φY, Z)φX − g(φX,Z)φY − 2g(φX, Y )φZ),

in [31] for any tangent vector fields X,Y, Z to M(c).

The canonical example of cosymplectic manifold is given by the product

B2n × R of the Kähler manifold B2n(J, g) with the real line R. Now we will

give some well known examples which are cosymplectic manifolds on R2n+1.

Example 1 ([19]). We consider R2n+1 with Cartesian coordinates (xi, yi, z)

(i = 1, . . . , n) and its usual contact form

η = dz.

The characteristic vector field ξ is given by ∂
∂z

and its Riemannian metric g

and tensor field φ are given by

g =

n
∑

i=1

((dxi)
2 + (dyi)

2) + (dz)2, φ =





0 δij 0

−δij 0 0

0 0 0



 , i = 1, . . . , n.

This gives a cosymplectic structure on R2n+1. The vector fields Ei = ∂
∂yi

,

En+i = ∂
∂xi

, ξ form a φ-basis for the cosymplectic structure. On the other

hand, it can be shown that R2n+1(φ, ξ, η, g) is a cosymplectic manifold.

Example 2 ([14]). We denote the Cartesian coordinates in R5 by (x1, x2, x3,

x4, x5) and its Riemannian metric g by

g =













1 + τ2 0 τ2 0 −τ
0 1 0 0 0

τ2 0 1 + τ2 0 −τ
0 0 0 1 0

−τ 0 −τ 0 1













,

where τ = sin(x1 + x3). We define an almost contact structure (φ, ξ, η) on R5

by

φ =













0 −1 0 0 0

1 0 0 0 0

0 0 0 −1 0

0 0 1 0 0

0 −τ 0 −τ 0













, η = −τdx1 − τdx3 + dx5, ξ =
∂

∂x5
.

The fundamental 2-form Φ has the form

Φ = −(dx1 ∧ dx2 + dx3 ∧ dx4).
This gives a cosymplectic structure on R5. If we take vector fields E1 = ∂

∂x1
+

τ ∂
∂x5

, E2 = ∂
∂x3

+ τ ∂
∂x5

, φE1 = E3 = ∂
∂x2

, φE2 = E4 = ∂
∂x4

and E5 = ∂
∂x5

,

then these vector fields form a frame field in R5.



ON SLANT RIEMANNIAN SUBMERSIONS FOR COSYMPLECTIC MANIFOLDS 1755

4. Slant Riemannian submersions

Definition 1. LetM(φ, ξ, η, gM ) be a cosymplectic manifold and (N, gN ) be a

Riemannian manifold. A Riemannian submersion F :M(φ, ξ, η, gM ) → (N, gN )

is said to be slant if for any non zero vector X ∈ Γ(kerF∗) − {ξ}, the angle

θ(X) between φX and the space kerF∗ is a constant (which is independent of

the choice of p ∈ M and of X ∈ Γ(kerF∗) − {ξ}). The angle θ is called the

slant angle of the slant submersion. Invariant and anti-invariant submersions

are slant submersions with θ = 0 and θ = π/2, respectively. A slant submersion

which is not invariant nor anti-invariant is called proper submersion.

Now we will give some examples.

Example 3. R5 has got a cosymplectic structure as in Example 1. Let F :

R5 → R2 be a map defined by F (x1, x2, y1, y2, z) = ( 1√
2
(x1 − x2), y2). Then,

by direct calculations we have

kerF∗ = span{V1 = E1, V2 =
1√
2
(E3 + E4), V3 = ξ = E5}

and

(kerF∗)
⊥ = span{H1 =

1√
2
(E3 − E4), H2 = E2}.

Then it is easy to see that F is a Riemannian submersion. Moreover, φV1 = E3

and φV2 = − 1√
2
(E1 + E2) imply that |g(φV1, V2)| = 1√

2
. So F is a slant

submersion with slant angle θ = π
4
and ξ is a vertical vector field.

Example 4. R5 has got a cosymplectic structure as in Example 2. Let F :

R5 → R2 be a map defined by F (x1, x2, y1, y2, z) = ( 1√
2
(x1 − y1),

1√
2
(x2 − y2)).

Then, a simple calculation gives

kerF∗ = span{V1 =
1√
2
(E3 + E4), V2 =

1√
2
(E1 + E2), V3 = ξ = E5}

and

(kerF∗)
⊥ = span{H1 =

1√
2
(E3 − E4), H2 =

1√
2
(E1 − E2)}.

Then it is easy to see that F is a Riemannian submersion. Moreover, φV1 =

− 1√
2
(E1 + E2) and φV2 = 1√

2
(E3 +E4) imply that |g(φV1, V2)| = 1. So F is a

slant submersion with slant angle θ = 0.

Example 5. R5 has got a cosymplectic structure as in Example 1. Let F :

R5 → R3 be a map defined by F (x1, x2, y1, y2, z) = ( 1√
2
(x1 − x2), y2, z). Then,

by direct calculations we obtain

kerF∗ = span{V1 = E1, V2 =
1√
2
(E3 + E4)}

and

(kerF∗)
⊥ = span{H1 =

1√
2
(E3 − E4), H2 = E2, H3 = ξ}.
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Then it is easy to see that F is a Riemannian submersion. Moreover, φV1 = E3

and φV2 = − 1√
2
(E1 + E2) imply that |g(φV1, V2)| = 1√

2
. So F is a slant

submersion with slant angle θ = π
4
and ξ is a horizontal vector field.

4.1. Slant Riemannian submersions admitting vertical structure vec-

tor field

In this subsection, we will investigate the properties of slant Riemannian

submersions from a cosymplectic manifold onto a Riemannian manifold such

that characteristic vector field ξ is a vertical vector field.

Now, let F be a slant Riemannian submersion from a cosymplectic mani-

fold M(φ, ξ, η, gM ) onto a Riemannian manifold (N, gN ). Then for any U, V ∈
Γ(kerF∗), we put

(4.1) φU = ψU + ωU,

where ψU and ωU are vertical and horizontal components of φU , respectively.

Similarly, for any X ∈ Γ(kerF∗)
⊥, we have

(4.2) φX = BX + CX,
where BX (resp. CX) is vertical part (resp. horizontal part) of φX .

From (3.2), (4.1) and (4.2) we obtain

(4.3) gM (ψU, V ) = −gM (U,ψV )

and

(4.4) gM (ωU, Y ) = −gM (U,BY )
for any U, V ∈ Γ(kerF∗) and Y ∈ Γ((kerF∗)

⊥).

Using (2.5), (2.7) and (3.4) we obtain

(4.5) TUξ = 0, AXξ = 0

for any U ∈ Γ(kerF∗), X ∈ Γ((kerF∗)
⊥).

From (3.1), (4.1) and (4.2) we can easily obtain following lemma.

Lemma 3. Let F be a slant Riemannian submersion from a cosymplectic man-

ifold M(φ, ξ, η, gM ) to a Riemannian manifold (N, gN ). Then we have

−X = ωBX + C2X,

0 = ψBX + BCX,
φ
2
U = ψ

2
U + BωU,

0 = ωψU + CωU,
gM (CX,φU) = −gM(BX,ψU)

for any X ∈ Γ((kerF∗)
⊥) and V ∈ Γ((kerF∗)).

Proposition 1 ([15]). Let F be a Riemannian submersion from an almost

contact manifold onto a Riemannian manifold. If dim(kerF∗) = 2 and ξ is a

vertical vector field, then fibers are anti-invariant.



ON SLANT RIEMANNIAN SUBMERSIONS FOR COSYMPLECTIC MANIFOLDS 1757

Theorem 1. LetM(φ, ξ, η, gM ) be a cosymplectic manifold of dimension 2m+1

and (N, gN) is a Riemannian manifold of dimension n. Let F : M(φ, ξ, η, gM )

→ (N, gN ) be a slant Riemannian submersion. Then the fibers are not proper

totally umbilical.

Proof. If the fibers are proper totally umbilical, then we have

TUV = gM (U, V )H

for any vertical vector fields U, V where H is the mean curvature vector field

of any fibre. Since Tξξ = 0, we have H = 0, which shows that fibres are

minimal. Hence the fibers are totally geodesic. This completes the proof of the

theorem. �

By (2.5), (2.6), (4.1) and (4.2), we have

(∇Uω)V = CTUV − TUψV,(4.6)

(∇Uψ)V = BT UV − TUωV,(4.7)

where

(∇Uω)V = H∇UωV − ω∇̂UV,(4.8)

(∇Uψ)V = ∇̂UψV − ψ∇̂UV,(4.9)

for U, V ∈ Γ(kerF∗).

We will give a characterization theorem for slant submersions of a cosym-

plectic manifold. Since the proof of the following theorem is quite similar to

Theorem 3 of [15], so we don’t give the proof of it.

Theorem 2. Let F be a Riemannian submersion from a cosymplectic manifold

M(φ, ξ, η, gM ) onto a Riemannian manifold (N, gN ) such that ξ ∈ Γ(kerF∗).

Then, F is a slant Riemannian submersion if and only if there exists a constant

λ ∈ [0, 1] such that

(4.10) ψ
2 = −λ(I − η ⊗ ξ).

Furthermore, in such a case, if θ is the slant angle of F , it satisfies that λ =

cos2 θ.

By using (3.2), (4.1), (4.3) and (4.10), we have the following lemma.

Lemma 4. Let F be a slant Riemannian submersion from a cosymplectic man-

ifold M(φ, ξ, η, gM ) onto a Riemannian manifold (N, gN ) with slant angle θ.

Then the following relations are valid

gM (ψU, ψV ) = cos2 θ(gM (U, V )− η(U)η(V )),(4.11)

gM (ωU, ωV ) = sin2 θ(gM (U, V )− η(U)η(V )),(4.12)

for any U, V ∈ Γ(kerF∗).
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We denote the complementary orthogonal distribution to ω(kerF∗) in

(kerF∗)
⊥ by µ. Then we have

(4.13) (kerF∗)
⊥ = ω(kerF∗)⊕ µ.

Lemma 5. Let F be a proper slant Riemannian submersion from a cosymplec-

tic manifold M(φ, ξ, η, gM ) onto a Riemannian manifold (N, gN). Then µ is

an invariant distribution of (kerF∗)
⊥, under the endomorphism φ.

Proof. For X ∈ Γ(µ) and V ∈ Γ(kerF∗), from (3.2) and (4.1), we obtain

gM (φX, ωV ) = gM (φX, φV )− gM (φX,ψV )

= gM (X,V )− η(X)η(V )− gM (φX,ψV )

= gM (X,φψV ) = 0.

In a similar way, we have gM (φX,U) = −gM (X,φU) = 0 due to φU ∈
Γ((kerF∗) ⊕ ω(kerF∗)) for X ∈ Γ(µ) and U ∈ Γ(kerF∗). Thus the proof

of the lemma is completed. �

By help (4.12), we can give the following result:

Corollary 1. Let F be a proper slant Riemannian submersion from a cosym-

plectic manifold M2m+1(φ, ξ, η, gM ) onto a Riemannian manifold (Nn, gN ).

Let {e1, e2, . . . , e2m−n, ξ} be a local orthonormal frame of (kerF∗). Then

{csc θωe1, csc θωe2, . . . , csc θωe2m−n}
is a local orthonormal frame of ω(kerF∗).

By using (4.13) and Corollary 1, one can easily prove the following proposi-

tion.

Proposition 2. Let F be a proper slant Riemannian submersion from a cosym-

plectic manifold M2m+1(φ, ξ, η, gM ) onto a Riemannian manifold (Nn, gN ).

Then dim(µ) = 2(n−m). If µ = {0}, then n = m.

Lemma 6. Let F be a proper slant Riemannian submersion from a cosymplec-

tic manifold M2m+1(φ, ξ, η, gM ) onto a Riemannian manifold (N2n, gN) such

that ξ is vertical. Then there exists a local orthonormal frame

{e1, sec θψe1, e2, sec θψe2, . . . , em−n, sec θψem−n, ξ}
of (kerF∗).

Proof. Let e1 be a unit vector field of (kerF∗) such that it is perpendicular to ξ.

We put e∗2 = sec θψe1. By (4.11), we have e
∗
2⊥{e1, ξ} and gM (sec θψe1, sec θψe1)

= 1. Now we choose a unit vector field e2 orthogonal to e1, e
∗
2 = sec θψe1 and

ξ. Then sec θψe2 is also a vector field orthogonal to e1, sec θψe1, ξ and e2,

and also gM (sec θψe2, sec θψe2) = 1. Proceeding in this way, we obtain a local

orthonormal frame {ei, e∗i = sec θψei, ξ : i = 1, . . . ,m− n} of (kerF∗). �
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Lemma 7. Let F be a slant Riemannian submersion from a cosymplectic man-

ifold M(φ, ξ, η, gM ) onto a Riemannian manifold (N, gN). If ω is parallel, then

we have

(4.14) TψUψU = − cos2 θTUU.
Proof. If ω is parallel, from (4.6), we obtain CTUV = TUψV for U, V ∈
Γ(kerF∗). After putting V instead of U and using (2.3), we obtain

TUψV = TV ψU.
Substituting V by ψU in the above equation and using Theorem 2, we get the

required formula. �

We give a sufficient condition for a slant Riemannian submersion to be har-

monic as an analogue of a slant Riemannian submersion from an almost Her-

mitian manifold onto a Riemannian manifold in [25].

Theorem 3. Let F be a slant Riemannian submersion from a cosymplectic

manifold M(φ, ξ, η, gM ) onto a Riemannian manifold (N, gN ). If ω is parallel,

then F is a harmonic map.

Proof. The proof is similar to the proof of Theorem 4 in [15] and [25]. �

Now putting Q = ψ
2, we define ∇Q by

(4.15) (∇UQ)V = V∇UQV −Q∇̂UV

for any U, V ∈ Γ(kerF∗).

Theorem 4. Let F be a slant Riemannian submersion from a cosymplectic

manifold M(φ, ξ, η, gM ) onto a Riemannian manifold (N, gN ). Then ∇Q = 0.

Proof. From (4.10),

(4.16) Q∇̂UV = − cos2 θ(∇̂UV − η(∇̂UV )ξ)

for each U, V ∈ Γ(kerF∗), where θ is the slant angle. On the other hand, the

following equation is valid,

(4.17) V(∇UQV ) = − cos2 θ(∇̂UV − η(∇̂UV )ξ.

Combining (4.16) and (4.17), we obtain (∇UQ)V = 0. This completes the

proof. �

We now investigate the geometry of leaves of (kerF∗)
⊥ and kerF∗.

Theorem 5. Let F be a proper slant Riemannian submersion from a cosym-

plectic manifold M(φ, ξ, η, gM ) onto a Riemannian manifold (N, gN ). Then the

distribution (kerF∗)
⊥ defines a totally geodesic foliation on M if and only if

gM (H∇XY, ωψU) = gM (AXBY, ωU) + gM (H∇XCY, ωU)

for any X,Y ∈ Γ((kerF∗)
⊥) and U ∈ Γ(kerF∗).
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Proof. From (3.3) and (4.1), we have

gM (∇XY, U) = −gM (φ∇XφY, U) + gM (∇XY, ξ)η(U)(4.18)

= gM (∇XφY, φU) + gM (∇XY, ξ)η(U)

= gM (φ∇XY, ψU) + gM (∇XφY, ωU) + gM (∇XY, ξ)η(U)

for any X,Y ∈ Γ((kerF∗)
⊥) and U ∈ Γ(kerF∗).

Using (3.3) and (4.1) in (4.18), we obtain

gM (∇XY, U) = − gM (∇XY, ψ
2
U)− gM (∇XY, ωψU)(4.19)

+ gM (∇XY, ξ)η(U) + gM (∇XφY, ωU).

By (4.2) and (4.10) we have

gM (∇XY, U) = cos2 θgM (∇XY, U)− cos2 θη(U)η(∇XY )(4.20)

− gM (∇XY, ωψU) + gM (∇XY, ξ)η(U)

+ gM (∇XBY, ωU) + gM (∇XCY, ωU).

Using (2.7), (2.8) and (3.4) in the last equation, we obtain

gM (H∇XY, ωψU) = gM (AXBY, ωU) + gM (H∇XCY, ωU)

which proves the theorem. �

Theorem 6. Let F be a proper slant Riemannian submersion from a cosym-

plectic manifold M(φ, ξ, η, gM ) onto a Riemannian manifold (N, gN ). Then the

distribution (kerF∗) defines a totally geodesic foliation on M if and only if

gM (H∇UωψV,X) = gM (TUωV,BX) + gM (H∇UωV, CX)

for any U, V ∈ Γ(kerF∗) and X ∈ Γ((kerF∗)
⊥).

Proof. From (3.3) and (4.1), we have

gM (∇UV,X) = −gM (φ∇UφV,X) + gM (∇UV, ξ)η(X)(4.21)

= −gM (φ∇UψV,X)− gM (φ∇UωV,X)

= −gM (φ∇UψV,X) + gM (∇UωV, φX)

for any U, V ∈ Γ(kerF∗) and X ∈ Γ((kerF∗)
⊥).

Using (3.3), (4.1) and (4.2) in (4.21), we obtain

gM (∇UV,X) =− gM (∇Uψ
2
V,X)− gM (∇UωψV,X)(4.22)

+ gM (∇UωV,BX) + gM (∇UωV, CX).

By using (4.10), (2.7), (2.8) and (3.4) in the last equation, we obtain the

requested relation. �

From Theorem 5 and Theorem 6 we have the following corollary.
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Corollary 2. Let F be a proper slant Riemannian submersion from a cosym-

plectic manifold M(φ, ξ, η, gM ) onto a Riemannian manifold (N, gN ). Then M

is a locally product Riemannian manifold if and only if

gM (H∇UωψV,X) = gM (TUωV,BX) + gM (H∇UωV, CX)

and

gM (H∇XY, ωψU) = gM (AXBY, ωU) + gM (H∇XCY, ωU)

for any U, V ∈ Γ(kerF∗) and X ∈ Γ((kerF∗)
⊥).

For a slant Riemannian submersion we have the following theorem.

Theorem 7. Let F be a proper slant Riemannian submersion from a cosym-

plectic manifold M(φ, ξ, η, gM ) onto a Riemannian manifold (N, gN ). Then F

is a totally geodesic map if and only if

gM (H∇UωψV,X) = gM (TUωV,BX) + gM (H∇UωV, CX)

and

gM (H∇Y ωψU,X) = gM (AY ωU,BX) + gM (H∇Y ωU, CX)

for U, V ∈ Γ(kerF∗) and X,Y ∈ Γ((kerF∗)
⊥).

Proof. First of all, we recall that a Riemannian submersion satisfies

(∇F∗)(X,Y ) = 0

for X,Y ∈ Γ((kerF∗)
⊥). We will prove that (∇F∗)(U, V ) = 0 and (∇F∗)(X,U)

= 0 for U, V ∈ Γ(kerF∗) and X ∈ Γ((kerF∗)
⊥). Since F is a Riemannian

submersion, from (3.1) and (3.3) we get

(4.23) ∇UV = −φ∇UφV + η(∇UV )ξ.

From (4.1) and (4.23), we obtain

gN((∇F∗)(U, V ), F∗X) = gM (∇UφψV,X)− gM (∇UωV, φX).

Using (4.1) and (4.2) once more, we get

gN((∇F∗)(U, V ), F∗X) = gM (∇Uψ
2
V,X) + gM (∇UωψV,X)

− gM (∇UωV,BX)− gM (∇UωV, CX).

Theorem 2, (2.5) and (2.6) imply that

gN ((∇F∗)(U, V ), F∗X) = − cos2 θgM (∇UV,X) + gM (∇UωψV,X)

− gM (TUωV,BX)− gM (H∇UωV, CX).

After some calculations we have

sin2 θgN((∇F∗)(U, V ), F∗X) = gM (∇UωψV,X)− gM (TUωV,BX)(4.24)

− gM (H∇UωV, CX).

In a similar way, we get

sin2 θgN((∇F∗)(Z,U), F∗X) = gM (∇ZωψU,X)− gM (AZωU,BX)(4.25)

− gM (H∇ZωU, CX).
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Then the proof follows from (4.24) and (4.25). �

Now we establish a sharp inequality between squared mean curvature ‖H‖2
and the scalar curvature τ̂ of fibre through p ∈M5(c).

Theorem 8. Let F be a proper slant Riemannian submersion from a cosym-

plectic space form M5(c) onto a Riemannian manifold (N2, gN). Then, we

have

(4.26) ‖H‖2 ≥ 8

9
(τ̂ − c

4
(1 + 3 cos2 θ)),

where H denotes the mean curvature of fibers. Moreover, the equality sign of

(4.26) holds at a point p of a fiber if and only if with respect to some suitable

slant orthonormal frame {e1, e2 = sec θψe1, e3 = ξ, e4 = csc θwe1, e5 =

csc θwe2} at p,

T 4
11 = 3T 4

22, T
4
12 = 0 and T 5

11 = 0,

where Tαij = g(T (ei, ej), eα) for 1 ≤ i, j ≤ 3 and α = 4, 5.

Proof. By Corollary 1 and Lemma 6, we construct a slant orthonormal frame

{e1, e2, e3, e4, e5} defined by

(4.27) e1, e2 = sec θψe1, e3 = ξ, e4 = csc θwe1, e5 = csc θwe2,

where e1, e2, e3 = ξ ∈ Γ(ker(F∗)) and e4, e5 ∈ Γ(ker(F∗))
⊥.

Let τ̂ be scalar curvature of a fibre F−1(q). We choose arbitrary point p of

the fibre F−1(q). We obtain

(4.28) τ̂ (p) = K̂(e1 ∧ e2) + K̂(e1 ∧ e3) + K̂(e2 ∧ e3).
By (2.12), (2.13) and (3.6), we get

(4.29) K̂(e1 ∧ e2) =
c

4
(1 + 3 cos2 θ) + T 4

11T
4
22 + T 5

11T
5
22 − (T 4

12)
2 − (T 5

12)
2,

where Tαij = g(T (ei, ej), eα) for 1 ≤ i, j ≤ 3 and α = 4, 5. Using Theorem 2 and

the relation (4.12), one has

(4.30) ψe2 = − cos θe1 and ωe2 = sin θe5.

From (4.7), we have

g((∇e2ψ)e2, e1)− g(BT e2e2, e1) + g(Te2ωe2, e1) = 0.

Using (4.1), (4.2), (4.9), (4.27) and (4.30) in the last relation, we obtain

0 = g(∇̂e2ψe2 − ψ∇̂e2e2, e1)− g(φT e2
e2, e1) + sin θg(Te2e5, e1)

= − cos θg(∇̂e2e1, e1) + cos θg(∇̂e2e2, e2)

+ g(Te2e2, ψe1 + ωe1) + sin θg(Te2e5, e1)
= sin θ[g(Te2e2, e4)− g(Te2e1, e5)].(4.31)

Since the submersion is proper, the equation (4.31) implies that

T 4
22 = T 5

12.
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Now we choose the unit normal vector e4 ∈ Γ(ker(F∗))
⊥ parallel to the mean

curvature vector H(p) of fibre. Then we have

‖H(p)‖2 =
1

9
(T 4

11 + T 4
22)

2, T 5
11 + T 5

22 = 0.

So the relation (4.29) becomes

(4.32) K̂(e1 ∧ e2) =
c

4
(1 + 3 cos2 θ) + T 4

11T
4
22 − (T 5

11)
2 − (T 4

12)
2 − (T 4

22)
2.

From the trivial inequality (µ − 3λ)2 ≥ 0, one has (µ + λ)2 ≥ 8(λµ − λ
2).

Putting µ = T 4
11 and λ = T 4

22 in the last inequality we find

(4.33) ‖H‖2 ≥ 8

9
[K̂(e1 ∧ e2)−

c

4
(1 + 3 cos2 θ)].

Using (2.13) we get

K̂(e1 ∧ e3) = K̂(e2 ∧ e3) = 0.

By (2.13), (4.28) and the last relation we get required inequality. Moreover,

the equality sign of (4.26) holds at a point p of a fiber if and only if T 4
11 = 3T 4

22,

T 4
12 = 0 and T 5

11 = 0. �

4.2. Slant Riemannian submersions admitting horizontal structure

vector field

In this subsection, we will investigate the properties of slant Riemannian

submersions from a cosymplectic manifold onto a Riemannian manifold such

that characteristic vector field ξ is a horizontal vector field.

By (3.1), (3.2) and (3.3) we have

(4.34) φ2U = −U, (∇Uφ)V = 0 and g(φU, φV ) = g(U, V ), ∀U, V ∈Γ(kerF∗).

From (2.6), (2.10), (3.4) and (4.34) we obtain

(4.35) i) TUξ = 0 ii) η(∇UV ) = 0 iii) AXξ = 0

and

(4.36) ∇UV = −φ∇UφV

for any U, V ∈ Γ(kerF∗) and X(Γ(kerF∗)
⊥). By the following same steps in

(see: [5], [15]) we can prove the following characterization theorem:

Theorem 9. Let F be a Riemannian submersion from a cosymplectic manifold

M(φ, ξ, η, gM ) onto a Riemannian manifold (N, gN ) such that ξ ∈ (Γ(kerF∗)
⊥).

Then, F is a slant Riemannian submersion if and only if there exist a constant

λ ∈ [0, 1] such that

(4.37) ψ
2 = −λI.

Furthermore, in such a case, if θ is the slant angle of F , then λ = cos2 θ.

By virtue of Theorem 9, we get the following result:
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Lemma 8. Let F be a slant Riemannian submersion from a cosymplectic man-

ifold M(φ, ξ, η, gM ) onto a Riemannian manifold (N, gN ) with slant angle θ.

Then we have the following relations:

(4.38) gM (ψU, ψV ) = cos2 θgM (U, V ),

(4.39) gM (ωU, ωV ) = sin2 θgM (U, V ),

for any U, V ∈ Γ(kerF∗).

Remark 1. Let F be a slant Riemannian submersion from a cosymplectic man-

ifold M(φ, ξ, η, gM ) onto a Riemannian manifold (N, gN ) with slant angle θ

and ξ ∈ (Γ(kerF∗)
⊥). Then there is a distribution D ⊂ (Γ(kerF∗)

⊥) such that

(kerF∗)
⊥ = ω(kerF∗)⊕D ⊕ {ξ}.

In a similar argumentation of Lemma 5, we get:

Lemma 9. Let F be a slant Riemannian submersion from a cosymplectic man-

ifold M(φ, ξ, η, gM ) onto a Riemannian manifold (N, gN) with slant angle θ and

ξ ∈ (Γ(kerF∗)
⊥). Then the distribution D is invariant under φ.

Using same arguments with the proof of Theorem 4 and (4.15) we find:

Theorem 10. Let F be a slant Riemannian submersion from a cosymplectic

manifold M(φ, ξ, η, gM ) onto a Riemannian manifold (N, gN ) with slant angle

θ. Then ∇Q = 0.

By virtue of (4.39), we can state:

Corollary 3. Let F be a slant Riemannian submersion from a cosymplectic

manifold M2m+1(φ, ξ, η, gM ) onto a Riemannian manifold (Nn, gN ) with slant

angle θ and ξ ∈ (Γ(kerF∗)
⊥). If {e1, e2, . . . , e2m−n+1} be a local orthonormal

frame of (kerF∗), then {csc θwe1, csc θwe2, . . . , csc θwe2m−n+1} is a local or-

thonormal frame of ω(kerF∗). Moreover dim(D) =2(n−m− 1).

Using similar proof to the Lemma 6, one can get the following:

Lemma 10. Let F be a proper slant Riemannian submersion from a cosym-

plectic manifold M2m+1(φ, ξ, η, gM ) onto a Riemannian manifold (N2n+1, gN)

with slant angle θ and ξ ∈ (Γ(kerF∗)
⊥). Then there exists a local orthonormal

frame {ei, sec θψei : i = 1, . . . ,m− n} of (kerF∗).

Lemma 11. Let F be a proper slant Riemannian submersion from a cosym-

plectic manifoldM2m+1(φ, ξ, η, gM ) onto a Riemannian manifold (Nn, gN) with

slant angle θ and ξ ∈ (Γ(kerF∗)
⊥). If ω is parallel, then we have

(4.40) TψUψU = − cos2 θTUU.
Proof. This proof works like the Kaehlerian case in ([25]). �

The following result gives the sufficient condition to obtain the proper har-

monic slant submersion.
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Theorem 11. Let F be a proper slant Riemannian submersion from a cosym-

plectic manifold M2m+1(φ, ξ, η, gM ) onto a Riemannian manifold (N2n+1, gN)

with slant angle θ and ξ ∈ (Γ(kerF∗)
⊥). If ω is parallel, then F is a harmonic

map.

Proof. By means of (2.16), we know that

(4.41) (∇F∗)(X,Y ) = 0,

for any horizontal vector fields X,Y. From (2.15), (2.17), (4.41) and Lemma

10, we get

τ (F ) = −
m−n
∑

i=1

[(∇F∗)(ei, ei) + (∇F∗)(sec θψei, sec θψei)]

= −
m−n
∑

i=1

[F∗(∇eiei) + sec2 θF∗(∇ψeiψei)],(4.42)

where {e1, sec θψe1, e2, sec θψe2, . . ., em−n, sec θψem−n} is an orthonormal

frame of (kerF∗). By applying (2.5) to (4.42), we obtain

τ (F ) = −
m−n
∑

i=1

F∗(Teiei + sec2 θTψeiψei).

Then using Lemma 11, we have

τ (F ) = −
m−n
∑

i=1

F∗(Teiei − Teiei) = 0

which says that F is a harmonic map. �

Nowwe give information about the geometry of the leaves of the distributions

(kerF∗) and (kerF∗)
⊥. By using the relations (4.35), (4.36) and Lemma 11

and following same way for the proof of the slant submersions from almost

Hermitian manifolds (see [25]), we have:

Theorem 12. Let F be a proper slant Riemannian submersion from a cosym-

plectic manifold M(φ, ξ, η, gM ) onto a Riemannian manifold (N, gN ). Then the

distribution (kerF∗)
⊥ defines a totally geodesic foliation on M if and only if

gM (H∇XY, ωψU) = gM (AXBY, ωU) + gM (H∇XCY, ωU)

for any X,Y ∈ Γ((kerF∗)
⊥) and U ∈ Γ(kerF∗).

Theorem 13. Let F be a proper slant Riemannian submersion from a cosym-

plectic manifold M(φ, ξ, η, gM ) onto a Riemannian manifold (N, gN ). Then the

distribution (kerF∗) defines a totally geodesic foliation on M if and only if

gM (H∇UωψV,X) = gM (TUωV,BX) + gM (H∇UωV, CX)

for any U, V ∈ Γ(kerF∗) and X ∈ Γ((kerF∗)
⊥).

From Theorem 12 and Theorem 13, we obtain:
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Corollary 4. Let F be a proper slant Riemannian submersion from a cosym-

plectic manifold M(φ, ξ, η, gM ) onto a Riemannian manifold (N, gN ). Then M

is a locally product Riemannian manifold if and only if

gM (H∇XY, ωψU) = gM (AXBY, ωU) + gM (H∇XCY, ωU)

and

gM (H∇UωψV,X) = gM (TUωV,BX) + gM (H∇UωV, CX)

for any U, V ∈ Γ(kerF∗) and X ∈ Γ((kerF∗)
⊥).

Now we give the sufficient and necessary totally geodesic condition for a

proper slant submersion F from cosymplectic manifolds with ξ ∈ (Γ(kerF∗)
⊥).

Theorem 14. Let F be a proper slant Riemannian submersion from a cosym-

plectic manifold M(φ, ξ, η, gM ) onto a Riemannian manifold (N, gN ) with slant

angle θ and ξ ∈ (Γ(kerF∗)
⊥). Then F is a totally geodesic map if and only if

gM (H∇UωψV,X) = gM (TUωV,BX) + gM (H∇UωV, CX)

and

gM (H∇Y ωψU,X) = gM (AY ωU,BX) + gM (H∇Y ωU, CX)

for U, V ∈ Γ(kerF∗) and X,Y ∈ Γ((kerF∗)
⊥).

Proof. Using (2.16), we have

(∇F∗)(X,Y ) = 0

for X,Y ∈ Γ((kerF∗)
⊥). Thus it is enough to prove that (∇F∗)(U, V ) = 0 and

(∇F∗)(X,U) = 0 for U, V ∈ Γ(kerF∗) and X ∈ Γ((kerF∗)
⊥). From (4.1) and

(4.35) we obtain

gN((∇F∗)(U, V ), F∗X) = gM (∇UφψV,X)− gM (∇UωV, φX).

Using again (4.1) and (4.2), we get

gN((∇F∗)(U, V ), F∗X) = gM (∇Uψ
2
V,X) + gM (∇UωψV,X)

− gM (∇UωV,BX)− gM (∇UωV, CX).

By Theorem 9, (2.5), (2.6) and (4.35), we obtain

gN ((∇F∗)(U, V ), F∗X) = − cos2 θgM (∇UV,X) + gM (∇UωψV,X)

− gM (TUωV,BX)− gM (H∇UωV, CX).

By simple calculations, we have

sin2 θgN((∇F∗)(U, V ), F∗X) = gM (∇UωψV,X)− gM (TUωV,BX)(4.43)

− gM (H∇UωV, CX).

In a similar way, we get

sin2 θgN ((∇F∗)(Y, U), F∗X) = gM (∇Y ωψU,X)− gM (AY ωU,BX)(4.44)

− gM (H∇Y ωU, CX).

Combining (4.43) and (4.44), we get requested equations. �
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Now we give a sharp inequality between squared mean curvature ‖H‖2 and

the scalar curvature τ̂ of fibre through p ∈M5(c) such that characteristic vector

field ξ is horizontal.

Theorem 15. Let F be a proper slant Riemannian submersion from a cosym-

plectic space form M5(c) onto a Riemannian manifold (N3, gN). Then, we

have

(4.45) ‖H‖2 ≥ (τ̂ − c

4
(1 + 3 cos2 θ)).

Moreover, the equality sign of (4.45) holds at a point p of a fiber if and only

if with respect to some suitable slant orthonormal frame {e1, e2 = sec θψe1,

e3 = csc θwe1, e4 = csc θwe2, e5 = ξ} at p,

T 4
11 = −T 4

22, and T 3
11 = T 3

12 = T 3
22 = 0 = T 5

ij ,

where Tαij = g(T (ei, ej), eα) for 1 ≤ i, j ≤ 2 and 3 ≤ α ≤ 5. Here H is the

mean curvature of fiber.

Proof. By Corollary 3 and Lemma 10, we construct a slant orthonormal frame

{e1, e2, e3, e4, e5} defined by

(4.46) e1, e2 = sec θψe1, e3 = csc θwe1, e4 = csc θwe2, e5 = ξ,

where e1, e2 ∈ Γ(ker(F∗)) and e3, e4, e5 = ξ ∈ Γ(ker(F∗))
⊥.

Let τ̂ be scalar curvature of a fibre F−1(q). We choose an arbitrary point p

of the fibre F−1(q). Since dim(KerF∗) = 2, we obtain

(4.47) τ̂ (p) = K̂(e1 ∧ e2).
By (2.12), (2.13), (4.35(i)) and (3.6), we get

(4.48) K̂(e1 ∧ e2) =
c

4
(1 + 3 cos2 θ) + T 3

11T
3
22 + T 4

11T
4
22 − (T 3

12)
2 − (T 4

12)
2,

where Tαij = g(T (ei, ej), eα) for 1 ≤ i, j ≤ 2 and α = 3, 4, 5. Using Theorem 9

and the relation (4.39), one has

(4.49) ψe2 = − cos θe1 and ωe2 = sin θe5.

From (4.7) we have

g((∇e2ψ)e2, e1) = g(BT e2e2, e1)− g(Te2ωe2, e1).
Using (4.1), (4.2), (4.9), (4.46) and (4.49) in the last relation, we obtain

0 = g(∇̂e2ψe2 − ψ∇̂e2e2, e1)− g(φT e2
e2, e1) + sin θg(Te2e4, e1)

= − cos θg(∇̂e2e1, e1) + cos θg(∇̂e2e2, e2)

+ g(Te2e2, ψe1 + ωe1) + sin θg(Te2e4, e1)
= sin θ[g(Te2e2, e3)− g(Te2e1, e4)].(4.50)

Since our submersion is proper, the equation (4.50) implies

T 3
22 = T 4

12.
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Because of Teαξ = 0, we can choose the unit normal vector e4 ∈ Γ(ker(F∗))
⊥

parallel to the mean curvature vector H(p) of fibre. Then we have

‖H(p)‖2 =
1

4
(T 4

11 + T 4
22)

2, T 3
11 + T 3

22 = 0.

So the relation (4.48) becomes

(4.51) K̂(e1 ∧ e2) =
c

4
(1 + 3 cos2 θ) + T 4

11T
4
22 − (T 3

11)
2 − (T 3

12)
2 − (T 3

22)
2.

From the trivial inequality (µ − λ)2 ≥ 0, one has (µ + λ)2 ≥ 4λµ. Putting

µ = T 4
11 and λ = T 4

22 in the last inequality, we find

(4.52) ‖H‖2 ≥ [K̂(e1 ∧ e2)−
c

4
(1 + 3 cos2 θ)].

By (4.47) and the last relation, we get required inequality. Moreover, the

equality sign of (4.45) holds at a point p of a fiber if and only if T 4
11 = −T 4

22,

T 3
11 = T 3

12 = T 3
22 = 0 = T 5

ij . �

Recently H. Tastan, [28], proved that the horizontal distribution of a La-

grangian submersion from a Kaehlerian manifold to a Riemannian manifold

is integrable and totally geodesic. He also showed that such a submersion is

totally geodesic if and only if it has totally geodesic fibres.

Anti-invariant submersions are special slant submersions with slant angle

θ = π
4
. Now we focus on anti-invariant submersions from a cosymplectic man-

ifold to a Riemannian manifold such that (kerF∗)
⊥ =φ( ker(F∗)) ⊕ {ξ}. In

this case we note that ker(F∗) = φ((kerF∗)
⊥). The authors investigated such

a submersions in [17]. We will give some additional results.

By means of (4.34) and (2.5)-(2.8), we give:

Lemma 12. Let F be a Riemannian submersion from a cosymplectic mani-

fold M(φ, ξ, η, gM ) onto a Riemannian manifold (N, gN) such that (kerF∗)
⊥ =

φ(ker(F∗))⊕ {ξ}. Then

(4.53) i) TUφE = φTUE and ii) AXφE = φAXE

for any U ∈ Γ(kerF∗), X ∈ Γ((kerF∗)
⊥) and E ∈ Γ(TM).

By (2.4) and (4.53), we obtain the following result.

Corollary 5. Let F be a Riemannian submersion from a cosymplectic man-

ifold M(φ, ξ, η, gM ) onto a Riemannian manifold (N, gN ) such that (kerF∗)
⊥

= φ(ker(F∗))⊕ {ξ}. Then, for any X,Y ∈ Γ((kerF∗)
⊥), we have

(4.54) AXφY = −AY φX.

Theorem 16. Let F be a Riemannian submersion from a cosymplectic mani-

fold M(φ, ξ, η, gM ) onto a Riemannian manifold (N, gN) such that (kerF∗)
⊥ =

φ(ker(F∗)) ⊕ {ξ}. Then the horizontal distribution (kerF∗)
⊥ is integrable and

totally geodesic.
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Proof. Since the tensor field is A = AH , it is sufficient to show that AX = 0

for any X ∈ Γ((kerF∗)
⊥). If Y and Z are horizontal vector fields on M, we

have

gM (AXφY, Z)
(4.54)
= −gM (AY φX,Z)

(4.53)
= −gM (φAYX,Z)

φ anti-sym
= gM (AYX,φZ)

(2.4)
= −gM (AXY, φZ)

(2.11)
= gM (AXφZ, Y )

(4.54)
= −gM (AZφX, Y )

(2.11)
= gM (AZY, φX)

(2.4)
= −gM (AY Z, φX)

(2.11)
= gM (AY φX,Z)

(4.54)
= −gM (AXφY, Z).

So we get

(4.55) AXφY = 0

which implies φAXY = 0. By (3.1) we obtain

(4.56) AXY = −gM (AXY, ξ)ξ = gM (AXξ, Y )ξ = 0.

Since U is a vertical vector field on M , φU will be a horizontal vector field on

M . Therefore we obtain AXφU = 0. Using (3.1) and (4.53), we have

(4.57) AXU = 0.

By virtue of (4.56) and (4.57) we get AX = 0. The fact that (kerF∗)
⊥ is totally

geodesic is obvious from (4.55) and (see [17], Corollary 5). �

Using Theorem 16 and (see [17], Corollary 6 and Theorem 15), we obtain

the following theorem.

Theorem 17. Let F be a Riemannian submersion from a cosymplectic mani-

fold M(φ, ξ, η, gM ) onto a Riemannian manifold (N, gN) such that (kerF∗)
⊥ =

φ(ker(F∗))⊕{ξ}. Then F is a totally geodesic map if and only if it has totally

geodesic fibers.

Since horizontal distribution for a slant Riemannian submersion from a

cosymplectic manifoldM(φ, ξ, η, gM ) onto a Riemannian manifold (N, gN ) with

(kerF∗)
⊥ = φ(ker(F∗))⊕ {ξ} is integrable, the equation (2.14) reduces to

(4.58) R(Y,W, V,X) = gM ((∇XT )(V,W ), Y )− gM (TVX, TWY )

for any X,Y, Z ∈ Γ((kerF∗)
⊥), V,W ∈ Γ(kerF∗).

From (3.5) and (4.58) we give:

Theorem 18. Let F be a Riemannian submersion from a cosymplectic man-

ifold M(φ, ξ, η, gM ) onto a Riemannian manifold (N, gN ) such that (kerF∗)
⊥

= φ(ker(F∗))⊕ {ξ}. Then the φ-sectional curvature H of M satisfies

H(V ) = gM ((∇φV T )(V, V ), φV )− gM (TV φV, TV φV ),(4.59)

H(X) = gM ((∇XT )(φX, φX), X)− gM (TφXX, TφXX),(4.60)

for any X,Y, Z ∈ Γ((kerF∗)
⊥), V,W ∈ Γ(kerF∗).
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It is well known from [8] that if the tensor field T is parallel, i.e., ∇T = 0

for a Riemannian submersion, then T = 0. From Theorem 18, we have:

Corollary 6. Let F be a Riemannian submersion from a cosymplectic mani-

fold M(φ, ξ, η, gM ) onto a Riemannian manifold (N, gN) such that (kerF∗)
⊥ =

φ(ker(F∗))⊕{ξ}. If the tensor field T is parallel, then the φ-sectional curvature

H of M vanishes.

Corollary 7. Let M(c 6= 0) be a cosymplectic space form. Then there is

no Riemannian submersion F with totally geodesic fibres from a cosymplectic

space form M(c 6= 0) onto a Riemannian manifold (N, gN ) such that (kerF∗)
⊥

= φ(ker(F∗))⊕ {ξ}.
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