• Title/Summary/Keyword: Maximum deformation

Search Result 1,217, Processing Time 0.035 seconds

Basic Study on Impact Analysis of Automobile (자동차 충돌 해석에 관한 기초 연구)

  • Cho, Jae-Ung;Min, Byung-Sang;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.1
    • /
    • pp.64-70
    • /
    • 2009
  • This study is to analyze the impact of automotive body with computer simulation. The total deformation, equivalent strain and strain and principal stress are analyzed respectively in case of front, rear and side impacts. The maximum total deformation of side impact is more than 6 times as large as that of rear impact. The maximum equivalent strain or stress of side impact is more than 4 times as large as that of rear impact. These deformation, strain and stress of front impact are a little more than those of rear impact. The maximum principal stress of side impact is more than 4.5 times as large as that of rear impact. This stress of front impact is a little more than that of rear impact.

  • PDF

Ductility inverse-mapping method for SDOF systems including passive dampers for varying input level of ground motion

  • Kim, Hyeong-Gook;Yoshitomi, Shinta;Tsuji, Masaaki;Takewaki, Izuru
    • Earthquakes and Structures
    • /
    • v.3 no.1
    • /
    • pp.59-81
    • /
    • 2012
  • A ductility inverse-mapping method for SDOF systems including passive dampers is proposed which enables one to find the maximum acceleration of ground motion for the prescribed maximum response deformation. In the conventional capacity spectrum method, the maximum response deformation is computed through iterative procedures for the prescribed maximum acceleration of ground motion. This is because the equivalent linear model for response evaluation is described in terms of unknown maximum deformation. While successive calculations are needed, no numerically unstable iterative procedure is required in the proposed method. This ductility inverse-mapping method is applied to an SDOF model of bilinear hysteresis. The SDOF models without and with passive dampers (viscous, viscoelastic and hysteretic dampers) are taken into account to investigate the effectiveness of passive dampers for seismic retrofitting of building structures. Since the maximum response deformation is the principal parameter and specified sequentially, the proposed ductility inverse-mapping method is suitable for the implementation of the performance-based design.

Fatigue and Vibration Analysis on Engine Parts (엔진 부품에 대한 피로 및 전동해석)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.3
    • /
    • pp.321-325
    • /
    • 2010
  • This study analyzes the results with the simulation of heat transfer, structural stress, fatigue and vibration on main parts of engine. The maximum temperature is shown by $300.73^{\circ}C$ on the upper part of piston with the heat transfer. Maximum total deformation or equivalent stress is shown by 65.31mm or 21364MPa respectively at the upper plane of piston with the structural analysis inclusive of heat transfer. The minimum life is shown by the cycle less than $10^7$ at the part of crankshaft with the fatigue analysis. The frequency with the maximum amplitude of deformation is shown by 14Hz. Maximum total deformation or equivalent stress is shown respectively by 93.99mm on the upper plane of piston or 42625MPa at the part connected with crack shaft and connecting rod at 14Hz. The durability of engine design can be verified by using the analysed result of this study.

Analyzing the mechano-bactericidal effect of nano-patterned surfaces by finite element method and verification with artificial neural networks

  • Ecren Uzun Yaylaci;Murat Yaylaci;Mehmet Emin Ozdemir;Merve Terzi;Sevval Ozturk
    • Advances in nano research
    • /
    • v.15 no.2
    • /
    • pp.165-174
    • /
    • 2023
  • The study investigated the effect of geometric structures of nano-patterned surfaces, such as peak sharpness, height, width, aspect ratio, and spacing, on mechano-bactericidal properties. Here, in silico models were developed to explain surface interactions with Escherichia coli. Numerical solutions were performed based on the finite element method and verified by the artificial neural network method. An E. coli cell adhered to the nano surface formed elastic and creep deformation models, and the cells' maximum deformation, maximum stress, and maximum strain were calculated. The results determined that the increase in peak sharpness, aspect ratio, and spacing values increased the maximum deformation, maximum stress, and maximum strain on E. coli cell. In addition, the results showed that FEM and ANN methods were in good agreement with each other. This study proved that the geometrical structures of nano-patterned surfaces have an important role in the mechano-bactericidal effect.

Simulation Analysis on Impact of Automotive Body (차체의 충돌에 관한 시뮬레이션 해석)

  • Cho, Jae-Ung;Min, Byoung-Sang;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.5
    • /
    • pp.477-482
    • /
    • 2009
  • This study analyzes the result with dynamic simulation about deformation according to time when a car impacts bollard. These results are shown as followings. The maximum deformation is shown at the lower part of front grass in case of the impact of front or passenger seat but this deformation is shown at the lower part of rear bumper in case of double impact. The maximum equivalent stress is shown at the upper part by the side grass of driver seat at the elapsed time of 0.00075 second after impact in case of the impact of front or passenger seat but this deformation is shown at the front bonnet at the elapsed time of 0.004 second after the additional impact in case of double impact. The maximum total deformation or equivalent stress is shown nearly same in case of the impact of front or passenger seat. But the value of this deformation or equivalent stress in case of the impact of front or passenger seat is shown with 2 times or more than 17% respectively as this value in case of double impact.

  • PDF

An empirical formulation to predict maximum deformation of blast wall under explosion

  • Kim, Do Kyun;Ng, William Chin Kuan;Hwang, Oeju
    • Structural Engineering and Mechanics
    • /
    • v.68 no.2
    • /
    • pp.237-245
    • /
    • 2018
  • This study proposes an empirical formulation to predict the maximum deformation of offshore blast wall structure that is subjected to impact loading caused by hydrocarbon explosion. The blast wall model is assumed to be supported by a simply-supported boundary condition and corrugated panel is modelled. In total, 1,620 cases of LS-DYNA simulations were conducted to predict the maximum deformation of blast wall, and they were then used as input data for the development of the empirical formulation by regression analysis. Stainless steel was employed as materials and the strain rate effect was also taken into account. For the development of empirical formulation, a wide range of parametric studies were conducted by considering the main design parameters for corrugated panel, such as geometric properties (corrugation angle, breadth, height and thickness) and load profiles (peak pressure and time). In the case of the blast profile, idealised triangular shape is assumed. It is expected that the obtained empirical formulation will be useful for structural designers to predict maximum deformation of blast wall installed in offshore topside structures in the early design stage.

A Proposal of Steel Structure Beam-to-Column Connection Appling High Strength Bolt Improved in Deformation Capacity (고력볼트의 변형능력을 향상시킨 강구조 보-기둥 접합부의 제안)

  • Kim, Seung-Goo;Lee, Seung-Jae;Oh, Sang-Hoon;Kang, Cang-Hoon
    • Proceeding of KASS Symposium
    • /
    • 2006.05a
    • /
    • pp.182-188
    • /
    • 2006
  • This study propose cutting body portion-high strength bolts to improve deformation capacity of High strength bolts, which are the mechanical fasteners used for End-plate connection. And, we report that loading test results of steel beam-to-column connection using high deformation capacity-high strength bolts in accordance with SAC2000 loading program. As a result, the initial stiffness and the maximum strength of the connection using high deformation capacity-high strength bolts, are approximately the same in comparison with those of the end-plate connection using the existing high strength bolts. But the deformation capacity of the connection is more than twice as much as those.

  • PDF

Study on Structural Durability Analysis at Bicycle Saddle (자전거 안장에서의 구조적 내구성 해석에 관한 연구)

  • Cho, Jaeung;Han, Moonsik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.5
    • /
    • pp.104-112
    • /
    • 2013
  • This study investigates the structural analysis result with vibration and fatigue on 3 kinds of bicycle saddle models. When the static load applies on the upper plane of model, maximum stress becomes within the allowable stress in case of model 1. As the value of Stress or deformation becomes lower on the order of model types 1, 2 and 3, these models become more stabilized or safer at durability in this order. On the vibration analysis, model type 1 has the maximum stress or deformation more than 5 times by comparing with model type 1 or 2. Model type 1 becomes most excellent on vibration durability. As maximum displacement due to vibration happens in case of model type 3, it becomes unstabilized. But the stresses of model types 1, 2 and 3 become within the allowable stress and these models are considered to be safe. At the status of the severest fatigue load, model type 3 becomes safer than model type 1 or 2. This study result is applied with the design of safe bicycle saddle and it can be useful to improve the durability by predicting prevention against the deformation due to its vibration and fatigue.

An investigation on tunnel deformation behavior of expressway tunnels

  • Chen, Shong-Loong;Lee, Shen-Chung
    • Geomechanics and Engineering
    • /
    • v.21 no.2
    • /
    • pp.215-226
    • /
    • 2020
  • The magnitude and distribution of tunnel deformation were widely discussed topics in tunnel engineering. In this paper, a three-dimensional (3D) finite element program was used for the analysis of various horseshoe-shaped opening expressway tunnels under different geologies. Two rock material models - Mohr-Coulomb and Hoek-Brown were executed in the process of analyses; and the results show that the magnitude and distribution of tunnel deformation were close by these two models. The tunnel deformation behaviors were relevant to many factors such as cross-sections and geological conditions; but the geology was the major factor to the normalized longitudinal deformation profile (LDP). If the time-dependent factors were neglected, the maximum displacements were located at the distance of 3 to 4 tunnel diameters behind the excavation face. The ratios of displacement at the excavation face to the maximum displacement were around 1/3 to 1/2. In general, the weaker the rock mass, the larger the ratio. The displacements in front of the excavation face were decreased with the increasement of distance. At the distance of 1.0 to 1.5 tunnel diameter, the displacements were reduced to one-tenth of the maximum displacement.

Evaluation on Structural Stability According to Steering Wheel Type (조향휠의 유형에 따른 구조안정성평가)

  • Han, Moon-Sik;Cho, Jae-Ung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.5
    • /
    • pp.733-740
    • /
    • 2012
  • This paper studies with structural and vibration analysis to evaluate the structural safety according to the types of steering wheels. This study models are two, three and four spoke types. As the number of spokes increases, the maximum equivalent stress becomes smaller but the maximum total deformation becomes a little higher. The natural frequency at three models are shown from 180 to 230Hz as the maximum deformation. The frequency responses as maximum amplitude displacement are happened at 200Hz, 500Hz and 500Hz respectively. In this study, the steering wheel with three spoke type is shown to become suitable at durability and production.