DOI QR코드

DOI QR Code

Analyzing the mechano-bactericidal effect of nano-patterned surfaces by finite element method and verification with artificial neural networks

  • Ecren Uzun Yaylaci (Faculty of Engineering and Architecture, Recep Tayyip Erdogan University) ;
  • Murat Yaylaci (Department of Civil Engineering, Recep Tayyip Erdogan University) ;
  • Mehmet Emin Ozdemir (Department of Civil Engineering, Cankiri Karatekin University) ;
  • Merve Terzi (Department of Civil Engineering, Istanbul Rumeli University) ;
  • Sevval Ozturk (Department of Civil Engineering, Recep Tayyip Erdogan University)
  • Received : 2023.02.24
  • Accepted : 2023.06.08
  • Published : 2023.08.25

Abstract

The study investigated the effect of geometric structures of nano-patterned surfaces, such as peak sharpness, height, width, aspect ratio, and spacing, on mechano-bactericidal properties. Here, in silico models were developed to explain surface interactions with Escherichia coli. Numerical solutions were performed based on the finite element method and verified by the artificial neural network method. An E. coli cell adhered to the nano surface formed elastic and creep deformation models, and the cells' maximum deformation, maximum stress, and maximum strain were calculated. The results determined that the increase in peak sharpness, aspect ratio, and spacing values increased the maximum deformation, maximum stress, and maximum strain on E. coli cell. In addition, the results showed that FEM and ANN methods were in good agreement with each other. This study proved that the geometrical structures of nano-patterned surfaces have an important role in the mechano-bactericidal effect.

Keywords

References

  1. Abharian, S., Sarfarazi, V., Marji, M.F., Rasekh, H. and Sadrekarimi, A. (2023), "Effect of geogrid reinforcement on tensile failure of high-strength self-compacted concrete", Mag. Concr. Res., 75(8), 379-401. https://doi.org/10.1680/jmacr.21.00284.
  2. Alameda, M.T., Osorio, M.R., Pedraz, P. and Rodriguez, I. (2022), "Mechano-dynamic analysis of the bactericidal activity of bioinspired moth-eye nanopatterned surfaces", Adv. Mater. Interf., 9, 2270127. https://doi.org/10.1002/admi.202270127.
  3. Altabey, W.A., Noori, M., Alarjani, A. and Zhao, Y. (2020), "Nano-delamination monitoring of BFRP nano-pipes of electrical potential change with ANNs", Adv. Nano Res., 9(1), 1-13. https://doi.org/10.12989/anr.2020.9.1.001.
  4. ANSYS Mechanical APDL (2013), ANSYS Contact Technology Guide, Ansys Inc., Canonsburg, Pennsylvania, U.S.A.
  5. Asteris, P.G. and Mokos, V.G. (2020), "Concrete compressive strength using artificial neural networks", Neural. Comput. Appl., 32, 11807-11826. https://doi.org/10.1007/s00521-019-04663-2.
  6. Bagherifard, S., Hickey, D.J., de Luca, A.C., Malheiro, V.N., Markaki, A.E., Guagliano, M. and Webster, T.J. (2015), "The influence of nanostructured features on bacterial adhesion and bone cell functions on severely shot peened 316L stainless steel", Biomaterials, 73, 185-197. https://doi.org/10.1016/j.biomaterials.2015.09.019.
  7. Bouafia, H., Chikh, A., Bousahla, A.A., Bourada, F., Heireche, H., Tounsi, A., Benrahou, K.H., Tounsi, A., Al-Zahrani, M.M. and Hussain, M. (2021), "Natural frequencies of FGM nanoplates embedded in an elastic medium", Adv. Nano Res., 11(3), 239-249. https://doi.org/ 10.12989/anr.2021.11.3.239.
  8. Cao, Y., Su, B., Chinnaraj, S., Jana, S., Bowen, L., Charlton, S., Duan, P., Jakubovics, N.S. and Chen, J. (2018), "Nanostructured titanium surfaces exhibit recalcitrance towards Staphylococcus epidermidis biofilm formation", Sci. Rep., 8, 1071. https://doi.org/10.1038/s41598-018-19484-x.
  9. Cui, Q., Liu, T., Li, X., Zhao, L., Wu, Q.,Wang, X., Song, K. and Ge, D. (2021), "Validation of the mechano-bactericidal mechanism of nanostructured surfaces with finite element simulation", Colloids Surf. B, 206, 111929. https://doi.org/10.1016/j.colsurfb.2021.111929.
  10. DarAssi, M. and Hadji, L. (2014), "Analysis of the interplay between sedimentation and thermophoresis in the presence of convection in colloidal suspensions", Proceedings of the ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting, 46247, V01DT32A001 https://doi.org/10.1115/FEDSM2014-21078.
  11. DarAssi, M. (2021), "Convective stability of CO2 sequestration in a porous medium", Nonlinear Dyn. Syst. Theor., 21(2), 179-192.
  12. Dawson, C.W. and Wilby, R. (1998), "An artificial neural network approach to rainfall-runoff modelling", Hydrolog. Sci. J., 43(1), 47-66. https://doi.org/10.1080/02626669809492102.
  13. Dickson, M.N., Liang, E.I., Rodriguez, L.A., Vollereaux, N. and Yee, A.F. (2015), "Nanopatterne polymer surfaces with bactericidal properties", Biointerphases, 10(2), 021010. https://doi.org/10.1116/1.4922157.
  14. Eltaher, M.A., Almalki, T.A., Ahmed, K.I.E. and Almitani, K.H. (2019), "Characterization and behaviors of single walled carbon nanotube by equivalent-continuum mechanics approach", Adv. Nano Res., 7(1), 39. https://doi.org/10.12989/anr.2019.7.1.039.
  15. Fu, J., Haeri, H., Sarfarazi, V., Babanouri, N., Rezaei, A., Manesh, M.O., Bahrami, R. and Marji, M.F. (2023), "Effects of axial loading width and immediate roof thickness on the failure mechanism of a notched roof in room and pillar mining: experimental test and numerical simulation", Rock Mech. Rock Eng., 56, 719-745. https://doi.org/10.1007/s00603-022-03082-5.
  16. Green, D.W., Lee, K.K.H., Watson, J.A., Kim, H.Y., Yoon, K.S., Kim, E.J., Lee, J.M., Watson, G.S. and Jung H.S. (2017), "High quality bioreplication of intricate nanostructures from a fragile gecko skin surface with bactericidal properties", Sci. Rep., 7, 41023. https://doi.org/10.1038/srep41023.
  17. Hadji, L. and DarAssi, M. (2014), "Influence of sedimentation on the threshold for Soret-driven convection in colloidal suspensions", Phys. Rev. E., 89(1). https://10.1103/PhysRevE.89.013014.
  18. Hazell, G., Fisher, L.E., Murray, W.A., Nobbs, A.H. and Su, B. (2018), "Bioinspired bactericidal surfaces with polymer nanocone arrays", J. Colloid Interf. Sci., 528, 389-399. https://doi.org/10.1016/j.jcis.2018.05.096.
  19. Ivanova, E.P., Hasan, J., Webb, H.K., Truong, V.K., Watson, G.S., Watson, J.A., Baulin, V.A., Pogodin, S., Wang, J.Y., Tobin, M.J., Lobbe, C. and Crawford, R.J. (2012), "Natural bactericidal surfaces: mechanical rupture of Pseudomonas aeruginosa cells by cicada wings", Small (Weinheim an der Bergstrasse, Germany), 8(16), 2489-2494. https://doi.org/10.1002/smll.201200528.
  20. Ivanova, E.P., Linklater, D.P., Werner, M., Baulin, V.A., Xu, X., Vrancken, N., Rubanov, S., Hanssen, E., Wandiyanto, J., Truong, V.K., Elbourne, A., Maclaughlin, S., Juodkazis, S. and Crawford, R.J. (2020), "The multi-faceted mechano-bactericidal mechanism of nanostructured surfaces", Proc. Natl. Acad. Sci. U.S.A., 117(23), 12598-12605. https://doi.org/10.1073/pnas.1916680117.
  21. Jiang, R., Hao, L., Song, L., Tian, L., Fan, Y., Zhao, J., Liu, C., Ming, W. and Ren, L. (2020), "Lotus-leaf-inspired hierarchical structured surface with non- fouling and mechanical bactericidal performances", Chem. Eng. J., 398, 125609. https://doi.org/10.1016/j.cej.2020.125609.
  22. Kavzoglu, T. (2001), "An investigation of the design and use of feedforward artificial neural networks in the classification of remotely sensed images", Ph.D. Thesis, School of Geography, University of Nottingham.
  23. Kumar, Y., Gupta, A. and Tounsi, A. (2021), "Size-dependent vibration response of porous graded nanostructure with FEM and nonlocal continuum model", Adv. Nano Res., 11(1), 1-17. https://doi.org/10.12989/anr.2021.11.1.001.
  24. Le Cun, Y., Denker, J.S. and Solla, S.A., (1990), "Optimal brain damage", Adv. Neural Infrom. Pr. Syst., 2, 598-605.
  25. Linklater, D.P., Juodkazis, S., Rubanov, S. and Ivanova, E.P. (2017), "Comment on "Bactericidal effects of natural nanotopography of dragonfly wing on Escherichia coli", ACS Appl. Mater. Interf., 9, 29387-29393. https://doi.org/10.1021/acsami.7b05707.
  26. Liu, Q., Peng, K., Zeng, J., Marzouki, R., Majdi, A., Jan, A., Salameh, A.A. and Assilzadeh, H. (2022), "Effects of mining activities on Nano-soil management using artificial intelligence models of ANN and ELM", Adv. Nano Res., 12(6), 549-566. https://doi.org/10.12989/anr.2022.12.6.549.
  27. Maleki, E., Mirzaali, M.J., Guagliano, M. and Bagherifard, S. (2021), "Analyzing the mechano-bactericidal effect of nanopatterned surfaces on different bacteria species", Surf. Coat. Technol., 408, 126782. https://doi.org/10.1016/j.surfcoat.2020.126782.
  28. Meek R.W., Vyas, H. and Piddock, L.J.V. (2015), "Nonmedical uses of antibiotics: time to restrict their use?", PLoS Biol., 13(10), e1002266. https://doi.org/10.1371/journal.pbio.1002266.
  29. Mehar, K. and Panda, S.K. (2019), "Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure", Adv. Nano Res., 7(3), 181-190. https://doi.org/10.12989/anr.2019.7.3.181.
  30. Mirzaali, M.J., van Dongen, I.C.P., Tumer, N., Weinans, H., Yavari, S.A. and Zadpoor, A.A. (2018), "In-silico quest for bactericidal but non-cytotoxic nanopatterns", Nanotechnology, 29, 43LT02. https://doi.org/10.1088/1361-6528/aad9bf.
  31. Noori, M., Khanlari, G., Rafiei, B., Sarfarazi, V. and Zaheri, M. (2022), "Correction to: Estimation of brittleness indexes from petrographic characteristics of different sandstone types (cenozoic and mesozoic sandstones), Markazi Province, Iran", Rock Mech. Rock Eng., 55. https://doi.org/10.1007/s00603-022-02934-4.
  32. O zdemir, M.E. and Yaylaci, M. (2023), "Research of the impact of material and flow properties on fluid-structure interaction in cage systems", Wind. Struct. An Int. J., 36(1), 31-40. https://doi.org/10.12989/was.2023.36.1.031.
  33. Pandey, H.K., Hirwani, C.K., Sharma, N., Katariya, P.V. and Panda, S.K. (2019), "Effect of nano glass cenosphere filler on hybrid composite eigenfrequency responses - An FEM approach and experimental verification", Adv. Nano Res., 7(6), 419-429. https://doi.org/10.12989/anr.2019.7.6.419.
  34. Pogodin, S., Hasan, J., Baulin, V.A., Webb, H.K., Truong, V.K., Phong Nguyen, T.H., Boshkovikj, V., Fluke, C. J., Watson, G.S., Watson, J.A., Crawford, R.J. and Ivanova, E.P. (2013), "Biophysical model of bacterial cell interactions with nanopatterned cicada wing surfaces", Biophys. J., 104(4), 835-840. https://doi.org/10.1016/j.bpj.2012.12.046.
  35. Ren, W., Wu, X. and Cai, R. (2022), "A hybrid artificial intelligence and IOT for investigation dynamic modeling of nano-system", Adv. Nano Res., 13(2), 165-174. https://doi.org/10.12989/anr.2022.13.2.165.
  36. Roy, A. and Chatterjee, K., (2021), "Theoretical and computational investigations into mechanobactericidal activity of nanostructures at the bacteria-biomaterial interface: a critical review", Nanoscale, 13, 647. https://doi.org/10.1039/D0NR07976F.
  37. Sun, T.C., DarAssi, M., Bilal, M. and Khan, M.A. (2022), "The study of Darcy-Forchheimer hybrid nanofluid flow with the thermal slip and dissipation effect using parametric continuation approach over a rotating disk", Waves Random Complex Med., https://doi.org/10.1080/17455030.2022.2072537.
  38. Turner, R.D., Hurd, A.F., Cadby, A., Hobbs, J.K. and Foster, S.J. (2013), "Cell wall elongation mode in Gram-negative bacteria is determined by peptidoglycan architecture", Nat. Commun., 4, 1496. https://doi.org/10.1038/ncomms2503.
  39. Uzun Yaylaci, E. (2021), "Isolation and characterization of Bacillus spp. from aquaculture cage water and its inhibitory effect against selected Vibrio spp", Arch. Microbiol., 204(1), 26. https://doi.org/10.1007/s00203-021-02657-0.
  40. Uzun Yaylaci, E., Oner, E., Yaylaci, M., Ozdemir, M.E., Abushattal, A. and Birinci, A. (2022), "Application of artificial neural networks in the analysis of the continuous contact problem", Struct. Eng. Mech., 84(1), 35-48. https://doi.org/10.12989/sem.2022.84.1.035.
  41. Uzun Yaylaci, E., Yaylaci, M., Olmez, H. and Birinci, A. (2020), "Artificial neural network calculations for a receding contact problem", Comput. Concr., 25(6). https://doi.org/10.12989/cac.2020.25.6.551.
  42. Vadillo-Rodriguez, V., Schooling, S.R. and Dutcher, J.R. (2009), "In situ characterization of differences in the viscoelastic response of individual gram-negative and gram-positive bacterial cells", J. Bacteriol., 191(17), 5518-5525. https://doi.org/10.1128/JB.00528-09.
  43. Velic, A., Hasan, J., Li, Z. and Yarlagadda, P. (2021), "Mechanics of bacterial interaction and death on nanopatterned surfaces", Biophys. J., 120(2), 217-231. https://doi.org/10.1016/j.bpj.2020.12.003.
  44. Yan, H., Jiang, Y., Zheng, J., Peng, C. and Li, Q. (2006), "A multilayer perceptron-based medical decision support system for heart disease diagnosis", Expert Syst. Appl., 30(2), 272-281. https://doi.org/10.1016/j.eswa.2005.07.022.
  45. Yaylaci, M., Yayli, M., Uzun Yaylaci, E., Olmez, H. and Birinci, A. (2021), "Analyzing the contact problem of a functionally graded layer resting on an elastic half plane with theory of elasticity, finite element method and multilayer perceptron", Struct. Eng. Mech., 78(5), 585-597. https://doi.org/10.12989/sem.2021.78.5.585.
  46. Yaylaci, M. (2022), "Simulate of edge and an internal crack problem and estimation of stress intensity factor through finite element method", Adv. Nano Res., 12(4), 405-414. https://doi.org/10.12989/anr.2022.12.4.405.
  47. Yaylaci, M., Abanoz, M., Uzun Yaylaci, E., O lmez, H., Sekban, M.D. and Birinci, A. (2022a), "The contact problem of the functionally graded layer resting on rigid foundation pressed via rigid punch", Steel Compos. Struct., 43(5), 661-672. https://doi.org/10.12989/scs.2022.43.5.661.
  48. Yaylaci, M., Sengul Sabano, B., Ozdemir, M.E. and Birinci, A. (2022b), "Solving the contact problem of functionally graded layers resting on a homogeneous half-plane and pressed with a uniformly distributed load by analytical and numerical methods", Struct. Eng. Mech., 82(3), 401-416. https://doi.org/10.12989/sem.2022.82.3.401.
  49. Yaylaci, M., Uzun Yaylaci, E., Ozdemir, M.E., Ay, S., and Ozturk, S. (2022c), "Implementation of finite element and artificial neural network methods to analyze the contact problem of a functionally graded layer containing crack", Steel Compos. Struct., 45(4), 501-511. https://doi.org/10.12989/scs.2022.45.4.501.
  50. Zhou, C., Koshani, R., O'Brien, B., Ronholm, J., Cao, X. and Wang, Y. (2021), "Bio-inspired mechano-bactericidal nanostructures: A promising strategy for eliminating surface foodborne bacteria", Curr. Opin. Food Sci., 39, 110-119. https://doi.org/10.1016/j.cofs.2020.12.021.