• Title/Summary/Keyword: Matrix algebra

Search Result 141, Processing Time 0.025 seconds

(CO)HOMOLOGY OF A GENERALIZED MATRIX BANACH ALGEBRA

  • M. Akbari;F. Habibian
    • The Pure and Applied Mathematics
    • /
    • v.30 no.1
    • /
    • pp.15-24
    • /
    • 2023
  • In this paper, we show that bounded Hochschild homology and cohomology of associated matrix Banach algebra 𝔊(𝔄, R, S, 𝔅) to a Morita context 𝔐(𝔄, R, S, 𝔅, { }, [ ]) are isomorphic to those of the Banach algebra 𝔄. Consequently, we indicate that the n-amenability and simplicial triviality of 𝔊(𝔄, R, S, 𝔅) are equivalent to the n-amenability and simplicial triviality of 𝔄.

ON COMPLEX REPRESENTATIONS OF THE CLIFFORD ALGEBRAS

  • Song, Youngkwon
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.487-497
    • /
    • 2020
  • In this paper, we establish a complex matrix representation of the Clifford algebra Cℓp,q. The size of our representation is significantly smaller than the size of the elements in Lp,q(ℝ). Additionally, we give detailed information about the spectrum of the constructed matrix representation.

JORDAN HIGHER DERIVATIONS ON TRIVIAL EXTENSION ALGEBRAS

  • Vishki, Hamid Reza Ebrahimi;Mirzavaziri, Madjid;Moafian, Fahimeh
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.2
    • /
    • pp.247-259
    • /
    • 2016
  • We first give the constructions of (Jordan) higher derivations on a trivial extension algebra and then we provide some sufficient conditions under which a Jordan higher derivation on a trivial extension algebra is a higher derivation. We then proceed to the trivial generalized matrix algebras as a special trivial extension algebra. As an application we characterize the construction of Jordan higher derivations on a triangular algebra. We also provide some illuminating examples of Jordan higher derivations on certain trivial extension algebras which are not higher derivations.

THE TENSOR PRODUCTS OF SPHERICAL NON-COMMUTATIVE TORI WITH CUNTZ ALGEBRAS

  • Park, Chun-Gil;Boo, Deok-Hoon
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.10 no.1
    • /
    • pp.127-139
    • /
    • 1997
  • The spherical non-commutative $\mathbb{S}_{\omega}$ were defined in [2,3]. Assume that no non-trivial matrix algebra can be factored out of the $\mathbb{S}_{\omega}$, and that the fibres are isomorphic to the tensor product of a completely irrational non-commutative torus with a matrix algebra $M_k(\mathbb{C})$. It is shown that the tensor product of the spherical non-commutative torus $\mathbb{S}_{\omega}$ with the even Cuntz algebra $\mathcal{O}_{2d}$ has a trivial bundle structure if and only if k and 2d - 1 are relatively prime, and that the tensor product of the spherical non-commutative torus $S_{\omega}$ with the generalized Cuntz algebra $\mathcal{O}_{\infty}$ has a non-trivial bundle structure when k > 1.

  • PDF

ON GENERALIZED JORDAN DERIVATIONS OF GENERALIZED MATRIX ALGEBRAS

  • Ashraf, Mohammad;Jabeen, Aisha
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.3
    • /
    • pp.733-744
    • /
    • 2020
  • Let 𝕽 be a commutative ring with unity, A and B be 𝕽-algebras, M be a (A, B)-bimodule and N be a (B, A)-bimodule. The 𝕽-algebra 𝕾 = 𝕾(A, M, N, B) is a generalized matrix algebra defined by the Morita context (A, B, M, N, 𝝃MN, ΩNM). In this article, we study generalized derivation and generalized Jordan derivation on generalized matrix algebras and prove that every generalized Jordan derivation can be written as the sum of a generalized derivation and antiderivation with some limitations. Also, we show that every generalized Jordan derivation is a generalized derivation on trivial generalized matrix algebra over a field.

Teaching Linear Algebra to High School Students

  • Choe, Young-Han
    • Research in Mathematical Education
    • /
    • v.8 no.2
    • /
    • pp.107-114
    • /
    • 2004
  • University teachers of linear algebra often feel annoyed and disarmed when faced with the inability of their students to cope with concepts that they consider to be very simple. Usually, they lay the blame on the impossibility for the students to use geometrical intuition or the lack of practice in basic logic and set theory. J.-L. Dorier [(2002): Teaching Linear Algebra at University. In: T. Li (Ed.), Proceedings of the International Congress of Mathematicians (Beijing: August 20-28, 2002), Vol. III: Invited Lectures (pp. 875-884). Beijing: Higher Education Press] mentioned that the situation could not be improved substantially with the teaching of Cartesian geometry or/and logic and set theory prior to the linear algebra. In East Asian countries, science-orientated mathematics curricula of the high schools consist of calculus with many other materials. To understand differential and integral calculus efficiently or for other reasons, students have to learn a lot of content (and concepts) in linear algebra, such as ordered pairs, n-tuple numbers, planar and spatial coordinates, vectors, polynomials, matrices, etc., from an early age. The content of linear algebra is spread out from grades 7 to 12. When the high school teachers teach the content of linear algebra, however, they do not concern much about the concepts of content. With small effort, teachers can help the students to build concepts of vocabularies and languages of linear algebra.

  • PDF

CENTER SYMMETRY OF INCIDENCE MATRICES

  • Lee, Woo
    • Communications of the Korean Mathematical Society
    • /
    • v.15 no.1
    • /
    • pp.29-36
    • /
    • 2000
  • The T-ideal of F(X) generated by $x^{n}$ for all x $\in$ X, is generated also by the symmetric polynomials. For each symmetric poly-nomial, there corresponds one row of the incidence matrix. Finding the nilpotency of nil-algebra of nil-index n is equivalent to determining the smallest integer N such that the (n, N)-incidence matrix has rank equal to N!. In this work, we show that the (n, (equation omitted)$^{(1,....,n)}$-incidence matrix is center-symmetric.

  • PDF

POISSON BRACKETS DETERMINED BY JACOBIANS

  • Ahn, Jaehyun;Oh, Sei-Qwon;Park, Sujin
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.26 no.2
    • /
    • pp.357-365
    • /
    • 2013
  • Fix $n-2$ elements $h_1,{\cdots},h_{n-2}$ of the quotient field B of the polynomial algebra $\mathbb{C}[x_1,x_2,{\cdots},x_n]$. It is proved that B is a Poisson algebra with Poisson bracket defined by $\{f,g\}=det(Jac(f,g,h_1,{\cdots},h_{n-2})$ for any $f,g{\in}B$, where det(Jac) is the determinant of a Jacobian matrix.

Service System Design Using Fuzzy Service FMEA and HOQ Matrix Algebra (Fuzzy Service FMEA 및 HOQ 행렬 대수를 이용한 서비스 시스템 설계)

  • Kim, Jun-Hong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.35 no.3
    • /
    • pp.155-162
    • /
    • 2012
  • This study proposes an integrated approach that uses both a fuzzy service FMEA (failure mode and effect analysis) and HOQ (house of quality) matrix algebra in designing and improving a service system. The fuzzy service FMEA methodology applies the customer satisfaction to the fuzzy RPN model. We fuzzify only the service satisfaction that consist in two failure factors, intangible service and tangible service, to more effectively assess the customer satisfactions on service encounters. Proposed fuzzy service satisfactions with triangle membership function are defuzzified by using the Fuzzy Inference System, and these are eventually identified the ranks on the potential fail points. HOQ matrices are constructed from cause-effect relationships. It is possible for these relationship matrix to find a linear approximation solution on the engineering attributes. Thus, in order to demonstrate how the proposed methods work, practical sample of the A/S part in S Electronic Co. provides for the ranking of the engineering attributes which has been successfully implemented.