CENTER SYMMETRY OF INCIDENCE MATRICES

Woo Lee

ABSTRACT. The T-ideal of $F\langle X \rangle$ generated by x^n for all $x \in X$, is generated also by the symmetric polynomials. For each symmetric polynomial, there corresponds one row of the incidence matrix. Finding the nilpotency of nil-algebra of nil-index n is equivalent to determining the smallest integer $\mathcal N$ such that the $\langle n, \mathcal N \rangle$ -incidence matrix has rank equal to $\mathcal N$!. In this work, we show that the $\langle n, \frac{n(n+1)}{2} \rangle^{(1,\dots,n)}$ -incidence matrix is center-symmetric.

1. Introduction

Let F be a field of characteristic 0 and A be an F-algebra. If there exists $n \in \mathbb{N}$ such that $a^n = 0$ for all $a \in A$, then A is called a nil-algebra and the natural number n is called the nil-index of A. And A is nilpotent of index m or A has nilpotency m if $A^m = 0$, but $A^{m-1} \neq 0$.

THEOREM 1.1. [1, 3] (Nagata-Higman Theorem) Any nil-algebra of finite nil-index is nilpotent of finite index.

We denote by $\mathcal{N}(n)$ or simply \mathcal{N} the nilpotency of a nil-algebra of nilindex n. This theorem was proved by Nagata ([3]) in 1952 and Higman showed $\mathcal{N}(n) \leq 2^n - 1$ and $\frac{n^2}{c^2} < \mathcal{N}(n)$ for sufficiently large n. In 1975, Kuzmin ([2]) improved the lower bound of $\mathcal{N}(n)$ to $\frac{n(n+1)}{2}$ and conjectured $\mathcal{N}(n) = \frac{n(n+1)}{2}$. Meanwhile, using the fact that a Young diagram with $n^2 + 1$ boxes has either n + 1 boxes or more in the first row, or n + 1 boxes or more in the first column, Razmyslov ([4]) showed that $\mathcal{N}(n) < n^2$.

Let $F\langle X \rangle = F\langle x_1, x_2, \dots \rangle$ be a free associative algebra in countably many variables. If $a_1, a_2, \dots, a_n \in F\langle X \rangle$, we denote by $S_n(a_1, a_2, \dots, a_n)$

Received February 18, 1999. Revised November 10, 1999.

¹⁹⁹¹ Mathematics Subject Classification: 15A72.

Key words and phrases: incidence matrix, nil-algebra, center symmetry.

or simply S_n the sum of the n! products of a_1, a_2, \ldots, a_n in every possible order, so called the *symmetric polynomial* of a_1, a_2, \ldots, a_n , i.e.,

$$S_n(a_1,a_2,\ldots,a_n) = \sum_{\sigma \in \operatorname{Sym}(n)} a_{\sigma(1)} a_{\sigma(2)} \cdots a_{\sigma(n)} \,,$$

where Sym(n) is the symmetric group on n letters.

An ideal I of F(X) is called a T-ideal if $\phi(I) \subseteq I$ for every algebra endomorphism ϕ of $F\langle X \rangle$. If we let I_n be the T-ideal generated by x^n for all $x \in X$, then the Nagata-Higman Theorem can be rephrased as following; there exists \mathcal{N} such that $x_1x_2\cdots x_{\mathcal{N}}\in I_n$ for all $x_1, x_2, \ldots, x_{\mathcal{N}}$ $\in X \text{ if } x_i^n \in I_n, 1 \leq i \leq \mathcal{N}.$

LEMMA 1.2. The ideal I_n is generated by S_n .

Throughout this paper, N will denote $\frac{n(n+1)}{2}$. Let's consider a matrix whose rows and columns are indexed by the various $S_n(*, ..., *)$ where the total degree of *'s is m, and all the multilinear monomials of degree m in $F(x_1, x_2, \dots x_m)$. First of all, one labels the columns by the (multilinear) monomials of degree m lexicographically. In other words, the first column is labeled by $x_1 x_2 \cdots x_{m-2} x_{m-1} x_m$, the second by $x_1 x_2 \cdots x_{m-2} x_m x_{m-1}$ and so on. Thus the last column is indexed by $x_m x_{m-1} x_{m-2} \cdots x_2 x_1$. We use $1, 2, \cdots$, for x_1, x_2, \cdots , if there is no risk of confusion. Suppose that j-th column is indexed by $i_1^j \cdots i_m^j$ or simply $i_1 \cdots i_m$. Fix a partition $P = (p_1, \dots, p_n)$ of m with n parts where $p_i \leq p_{i+1}, 1 \leq i \leq n-1$. Then j-th row of the matrix corresponding to the partition $P = (p_1, \ldots, p_n)$ is labeled by

$$S_n(i_1\cdots i_{p_1},i_{p_1+1}\cdots i_{p_1+p_2},\ldots,i_{p_1+\cdots+p_{n-1}+1}\cdots i_{p_1+\cdots+p_n}),$$

and the matrix is called $(n, m)^P$ -incidence matrix. In the j-th row one places 1 for the columns labeled by the monomials that appear in that row index, and 0 elsewhere. In other words, if

$$\begin{split} S_n(i_1\cdots i_{p_1},i_{p_1+1}\cdots i_{p_1+p_2},\ldots,i_{p_1+\cdots+p_{n-1}+1}\cdots i_{p_1+\cdots+p_n}) \\ &= i_1\cdots i_{p_1}i_{p_1+1}\cdots i_{p_1+p_2}\cdots i_{p_1+\cdots+p_{n-1}+1}\cdots i_{p_1+\cdots+p_n} \\ &+\cdots + i_{p_1+\cdots+p_{n-1}+1}\cdots i_{p_1+\cdots+p_n}\cdots i_{p_1+1}\cdots i_{p_1+p_2}i_1\cdots i_{p_1}, \end{split}$$

then we put 1 for the columns labeled by

$$\begin{split} i_1 \cdots i_{p_1} i_{p_1+1} \cdots i_{p_1+p_2} \cdots i_{p_1+\cdots+p_{n-1}+1} \cdots i_{p_1+\cdots+p_n}, \\ & \cdots, \\ i_{p_1+\cdots+p_{n-1}+1} \cdots i_{p_1+\cdots+p_n} \cdots i_{p_1+1} \cdots i_{p_1+p_2} i_1 \cdots i_{p_1}. \end{split}$$

 $S_2(1,23)$ $S_2(1,32)$ $S_2(2,13)$ $S_2(2,31)$ $S_2(3,12)$ $S_2(3,21)$

Table 1. The $(2,3)^{(1,2)}$ -incidence matrix.

For instance, the $\langle 2,3\rangle^{(1,2)}$ -incidence matrix is in Table 1. By stacking up those $\langle n,m\rangle^P$ -incidence matrices for all partition P of m with n parts, we may get the $\langle n,m\rangle$ -incidence matrix M with $k\cdot m!$ rows and m! columns where k is the number of partitions of m with n parts. To have the nilpotency of a nil-algebra of nil-index n as m, it is sufficient to show that m is the smallest positive integer such that

rank of $\langle n, m \rangle$ -incidence matrix = m!.

2. Incidence Matrix

Let's start with the simple facts.

PROPOSITION 2.1. Let q be a positive integer. Then the followings hold.

- (I) $q! = 1 + 1 \cdot 1! + 2 \cdot 2! + \cdots + (q-1) \cdot (q-1)!$
- (II) For any positive integer s that is less than or equal to q!, there exists a unique ordered pair $[s_1, \ldots, s_{q-1}]$ such that

$$s = 1 + s_1 \cdot 1! + s_2 \cdot 2! + \dots + s_{q-1} \cdot (q-1)!,$$

where $0 \le s_i \le i, \ 1 \le i \le q - 1$.

PROOF. (I) Suppose that the statement is true for any integer less than or equal to q-1. Then

$$q! = (q-1)! + (q-1) \cdot (q-1)!$$

= 1 + 1 \cdot 1! + \cdot \cdot + (q-2) \cdot (q-2)! + (q-1) \cdot (q-1)!...

(II) If s = q!, then it is clear by (I). Suppose s < q!. Then there exists the largest positive integer k such that $(k-1)! \le s-1 < k!$ for $1 \le k \le q$. Let s_{k-1} be the largest integer such that $s - s_{k-1}(k-1)!$ is nonnegative. By repeating this for $s - s_{k-1}(k-1)!$, one can get $[s_1, \ldots, s_{q-1}]$ such that

$$s = 1 + s_1 \cdot 1! + s_2 \cdot 2! + \cdots + s_{q-1} \cdot (q-1)!$$

If

(1)
$$1 + r_1 \cdot 1! + \dots + r_{q-1} \cdot (q-1)! = s$$
$$= 1 + s_1 \cdot 1! + \dots + s_{q-1} \cdot (q-1)!,$$

where $0 \le r_i, s_i \le i, 1 \le i \le q-1$, then we let l be the largest integer such that $r_l \ne s_l$. Without loss of generality, we may assume $r_l < s_l$. Then in Eq (1), one gets

$$(2) \qquad l! \leq (s_l - r_l)l! = (r_{l-1} - s_{l-1})(l-1)! + \dots = \sum_{j=1}^{l-1} (r_j - s_j)j! < l!$$

which is a contradiction so that we conclude $r_i = s_i$ for $i = 1, \ldots, q-1$.

Suppose that
$$j \leq \left(\frac{n(n+1)}{2}\right)! = N!$$
 and

$$j = 1 + j_1 \cdot 1! + j_2 \cdot 2! + \cdots + j_{N-1} \cdot (N-1)!,$$

where $0 \le j_k \le k$, $1 \le k \le N-1$. The multilinear monomial $i_1^j \cdots i_N^j$ corresponding to j-th column, denoted by C(j), can be found as following;

- (I) Choose the $(j_{N-1}+1)$ -st smallest number i_1^j in $\{1,2,\ldots,N\}$.
- (II) The k-th factor of $i_1 \cdots i_N$ is the $(j_{N-k}+1)$ -st smallest number in $\{1, 2, \ldots, N\} \setminus \{i_1, i_2, \ldots, i_{k-1}\}.$

From the construction of the $\langle n, N \rangle^{(1,\dots,n)}$ -incidence matrix, the *j*-th row index, denoted by R(j), is $S_n(i_1, i_2 i_3, \dots, i_{\frac{(n-1)n}{2}+1} \cdots i_N)$.

Remark 2.1. There is an 1-1 correspondence between the followings;

$$\begin{array}{ll} \text{ an integer } j, \text{ where } 1 \leq j \leq N! \\ \leftrightarrow & \text{ an ordered pair } [j_1, \ldots, j_{N-1}] \\ \leftrightarrow & i_1 i_2 i_3 \cdots i_{\frac{(n-1)n}{2}+1} \cdots i_N \end{array}$$

If there is no risk of confusion, we use any one of them. So $S_n(i_1, i_2 i_3, \ldots, i_{\frac{(n-1)n}{2}+1} \cdots i_N) = [j_1, \ldots, j_{N-1}] + \ldots + [k_1, \ldots, k_{N-1}]$ means that $S_n(i_1, i_2 i_3, \ldots, i_{\frac{(n-1)n}{2}+1} \cdots i_N)$ includes the monomials corresponding to $[j_1, \ldots, j_{N-1}]$ and $[k_1, \ldots, k_{N-1}]$.

The incidence matrix has entries either 0 or 1, i.e., $\{0,1\}$ -matrix, with constant row sums and constant column sums. To show $\mathcal{N}(2) = 3$, it is sufficient to show the $\langle 2,3\rangle^P$ -incidence matrix has some square submatrix whose determinant is nonzero for some partition P of 3 with 2 parts. Then P must be (1,2). Each rows and each columns of the submatrix include all 1's in those rows and columns in the incidence matrix. In fact the $\langle 2,3\rangle^{(1,2)}$ -incidence matrix has the following 3×3 submatrix,

	123	231	312
$S_2(1,23)$	1	1	0
$S_2(2,31)$	0	1	1
$S_2(3,12)$	1	0	1

whose determinant is 2. This observation is generalized in the following lemma.

PROPOSITION 2.2. For a nil-algebra A of finite index n, the nilpotency of A is $\mathcal{N}(n)$ if and only if $\mathcal{N}(n)$ is the smallest integer such that the $\langle n, \mathcal{N}(n) \rangle$ -incidence matrix has an invertible submatrix.

PROOF. It's clear that if the $\langle n, \mathcal{N}(n) \rangle$ -incidence matrix has such invertible submatrix, then the nilpotency of A is less than or equal to $\mathcal{N}(n)$.

Conversely, if the nilpotency of A is $\mathcal{N}(n)$, then $12\cdots\mathcal{N}(n) = \sum c_I S_n$ (W_I) where $W_I = \{w_1^I, \ldots, w_n^I\}$. If $S_n(W_K)$ is linearly dependent, then we substitute $S_n(W_K) = \sum c_J S_n(W_J)$. One gets $12\cdots\mathcal{N}(n) = \sum c_I S_n(W_I)$ in which all of $S_n(W_I)$ are linearly independent. These $S_n(W_I)$ form the rows of the invertible submatrix.

PROPOSITION 2.3. Let $(1^{r_1}2^{r_2}\cdots k^{r_k})$ be a partition of m with n parts where the superscript r_i is the multiplicity of part of size i. The $\langle n, m \rangle$ -incidence matrix is a $\{0,1\}$ -matrix, with constant row sums n!, and constant column sums

$$\sum \frac{n!}{\prod\limits_{i=1}^k r_i!} \;,$$

where the summation is taken over all partition types of m with n parts.

PROOF. The $\langle n, m \rangle$ -incidence matrix has m! columns and there are n! many 1's in each row if $m \geq n$, i.e., each row has the constant row sum n!. For the column sum, we need to count the number of ways dividing the string $12 \cdots m$ into n sets, that is, the column sum of the $\langle n, m \rangle$ -incidence matrix is equal to the number of way partitioning $12 \cdots m$ into n submonomials, each of which has length r_i without changing the order of variables in $12 \cdots m$. Hence the column sum of the $\langle n, m \rangle$ -incidence matrix is

$$\sum \frac{n!}{\prod\limits_{i=1}^k r_i!} \;,$$

where the summation is taken over all partition types of m with n parts. The number of distinct rows in the $\langle n, m \rangle$ -incidence matrix is

$$\sum \frac{m!}{\prod\limits_{i=1}^k r_i!} ,$$

where the summation is taken over all partition types of m with n parts.

For example, in the $\langle 3, 6 \rangle$ -incidence matrix, 123456 appears in the following rows;

partition type rows including 123456 $(1^24) = (4,1,1) \qquad S_3(1234,5,6), \ S_3(1,2345,6), \ S_3(1,2345,6), \\ (1^12^13^1) = (3,2,1) \qquad S_3(123,45,6), \ S_3(123,4,56), \ S_3(12,345,6), \ S_3(12,345,6), \ S_3(1,234,56), \\ (2^3) = (2,2,2) \qquad S_3(12,34,56).$

The diagonal entries of $\langle n, N \rangle^{(1,\dots,n)}$ -incidence matrix are 1 and the dimension of the $\langle n, N \rangle^{(1,\dots,n)}$ -incidence matrix is $N! \times N!$.

DEFINITION 2.4. A square matrix $(b_{ij})_{p \times p}$ is called *center-symmetric* if $b_{ij} = b_{p-i+1,p-j+1}$ for an even positive integer p.

Theorem 2.5. The $(n, N)^{(1,\dots,n)}$ -incidence matrix is center-symmetric.

PROOF. Suppose that (k,l)-entry of the $\langle n,N \rangle^{(1,\dots,n)}$ -incidence matrix is 1 and

$$k = 1 + k_1 \cdot 1! + k_2 \cdot 2! + \dots + k_{N-1} \cdot (N-1)!,$$

$$l = 1 + l_1 \cdot 1! + l_2 \cdot 2! + \dots + l_{N-1} \cdot (N-1)!,$$

where $0 \le k_m, l_m \le m, 1 \le m \le N-1$. Then

$$R(k) = S_n(i_1^k, i_2 i_3^k, \dots, i_{\frac{(n-1)n}{2}-1}^k \cdots i_{N-1}^k)$$

= $[k_1, \dots, k_{N-1}] + \dots + [l_1, \dots, l_{N-1}].$

The monomials $[k_1, \ldots, k_{N-1}]$ and $[l_1, \ldots, l_{N-1}]$ are the (k, k)- and (k, l)-entries of the incidence matrix. But

$$R(N! - k + 1) = S_n(i_1^{N!-k+1}, \dots, i_{\frac{(n-1)n}{2}-1}^{N!-k+1} \cdots i_{N-1}^{N!-k+1})$$

$$= [1 - k_1, \dots, j - k_j, \dots, (N-1) - k_{N-1}] + \dots$$

$$+ [1 - l_1, \dots, j - l_j, \dots, (N-1) - l_{N-1}],$$
for $1 \le j \le N - 1$

since
$$N! - [k_1, \ldots, k_{N-1}] = [1 - k_1, \ldots, j - k_j, \ldots, (N-1) - k_{N-1}]$$
 and $i_j^{N!-k+1} = N+1-i_j^k$.

References

- [1] G. Higman. On a conjecture of Nagata, Proc. Cambridge Philos. Soc **52** (1956), 1–4.
- [2] E. N. Kuzmin. On the Nagata-Higman theorem, in Mathematical Structures-Computational Mathematics-Mathematical Modeling, Proceedings dedicated to the sixtieth birthday of academican L. Iliev, Sofia, 1975. (Russian)
- [3] M. Nagata. On the nilpotency of nil-algebras, J. Math. Soc. Japan 4 (1953), 296-301.
- [4] Y. P. Razmyslov. Trace identities of full matrix algebras over a field of characteristic zero, Izv. Akad. Nauk SSSR 38 (1974), 723–756; English transl., Math. USSR-Izv. 8 (1974), 727–760.

Division of Computer, Electronics and Communication Engineering Kwangju University

Kwangju 503-703, Korea

E-mail: woolee@hosim.kwangju.ac.kr