• Title/Summary/Keyword: Matrix Ring

Search Result 236, Processing Time 0.023 seconds

STRUCTURE OF IDEMPOTENTS IN POLYNOMIAL RINGS AND MATRIX RINGS

  • Juan Huang;Tai Keun Kwak;Yang Lee;Zhelin Piao
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.5
    • /
    • pp.1321-1334
    • /
    • 2023
  • An idempotent e of a ring R is called right (resp., left) semicentral if er = ere (resp., re = ere) for any r ∈ R, and an idempotent e of R∖{0, 1} will be called right (resp., left) quasicentral provided that for any r ∈ R, there exists an idempotent f = f(e, r) ∈ R∖{0, 1} such that er = erf (resp., re = fre). We show the whole shapes of idempotents and right (left) semicentral idempotents of upper triangular matrix rings and polynomial rings. We next prove that every nontrivial idempotent of the n by n full matrix ring over a principal ideal domain is right and left quasicentral and, applying this result, we can find many right (left) quasicentral idempotents but not right (left) semicentral.

STRONGLY CLEAN MATRIX RINGS OVER NONCOMMUTATIVE LOCAL RINGS

  • Li, Bingjun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.1
    • /
    • pp.71-78
    • /
    • 2009
  • An element of a ring R with identity is called strongly clean if it is the sum of an idempotent and a unit that commute, and R is called strongly clean if every element of R is strongly clean. Let R be a noncommutative local ring, a criterion in terms of solvability of a simple quadratic equation in R is obtained for $M_2$(R) to be strongly clean.

Structures Related to Right Duo Factor Rings

  • Chen, Hongying;Lee, Yang;Piao, Zhelin
    • Kyungpook Mathematical Journal
    • /
    • v.61 no.1
    • /
    • pp.11-21
    • /
    • 2021
  • We study the structure of rings whose factor rings modulo nonzero proper ideals are right duo; such rings are called right FD. We first see that this new ring property is not left-right symmetric. We prove for a non-prime right FD ring R that R is a subdirect product of subdirectly irreducible right FD rings; and that R/N∗(R) is a subdirect product of right duo domains, and R/J(R) is a subdirect product of division rings, where N∗(R) (J(R)) is the prime (Jacobson) radical of R. We study the relation among right FD rings, division rings, commutative rings, right duo rings and simple rings, in relation to matrix rings, polynomial rings and direct products. We prove that if a ring R is right FD and 0 ≠ e2 = e ∈ R then eRe is also right FD, examining that the class of right FD rings is not closed under subrings.

ON WEAKLY LOCAL RINGS

  • Piao, Zhelin;Ryu, Sung Ju;Sung, Hyo Jin;Yun, Sang Jo
    • Korean Journal of Mathematics
    • /
    • v.28 no.1
    • /
    • pp.65-73
    • /
    • 2020
  • This article concerns a property of local rings and domains. A ring R is called weakly local if for every a ∈ R, a is regular or 1-a is regular, where a regular element means a non-zero-divisor. We study the structure of weakly local rings in relation to several kinds of factor rings and ring extensions that play roles in ring theory. We prove that the characteristic of a weakly local ring is either zero or a power of a prime number. It is also shown that the weakly local property can go up to polynomial (power series) rings and a kind of Abelian matrix rings.

THE UNITS AND INEMPOTENTS IN THE GROUP RING OF A FINITE CYCLIC GROUP

  • Park, Won-Sun
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.4
    • /
    • pp.855-864
    • /
    • 1997
  • Let K be a algebraically closed field of characteristic 0 and G a cyclic group of order n. We find the units and idempotent elements of the group ring KG by using the basic group table matrix of G.

  • PDF

ON SEMI-ARMENDARIZ MATRIX RINGS

  • KOZLOWSKI, KAMIL;MAZUREK, RYSZARD
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.4
    • /
    • pp.781-795
    • /
    • 2015
  • Given a positive integer n, a ring R is said to be n-semi-Armendariz if whenever $f^n=0$ for a polynomial f in one indeterminate over R, then the product (possibly with repetitions) of any n coefficients of f is equal to zero. A ring R is said to be semi-Armendariz if R is n-semi-Armendariz for every positive integer n. Semi-Armendariz rings are a generalization of Armendariz rings. We characterize when certain important matrix rings are n-semi-Armendariz, generalizing some results of Jeon, Lee and Ryu from their paper (J. Korean Math. Soc. 47 (2010), 719-733), and we answer a problem left open in that paper.

ON COMMUTATIVITY OF REGULAR PRODUCTS

  • Kwak, Tai Keun;Lee, Yang;Seo, Yeonsook
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.6
    • /
    • pp.1713-1726
    • /
    • 2018
  • We study the one-sided regularity of matrices in upper triangular matrix rings in relation with the structure of diagonal entries. We next consider a ring theoretic condition that ab being regular implies ba being also regular for elements a, b in a given ring. Rings with such a condition are said to be commutative at regular product (simply, CRP rings). CRP rings are shown to be contained in the class of directly finite rings, and we prove that if R is a directly finite ring that satisfies the descending chain condition for principal right ideals or principal left ideals, then R is CRP. We obtain in particular that the upper triangular matrix rings over commutative rings are CRP.

A STRUCTURE ON COEFFICIENTS OF NILPOTENT POLYNOMIALS

  • Jeon, Young-Cheol;Lee, Yang;Ryu, Sung-Ju
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.4
    • /
    • pp.719-733
    • /
    • 2010
  • We observe a structure on the products of coefficients of nilpotent polynomials, introducing the concept of n-semi-Armendariz that is a generalization of Armendariz rings. We first obtain a classification of reduced rings, proving that a ring R is reduced if and only if the n by n upper triangular matrix ring over R is n-semi-Armendariz. It is shown that n-semi-Armendariz rings need not be (n+1)-semi-Armendariz and vice versa. We prove that a ring R is n-semi-Armendariz if and only if so is the polynomial ring over R. We next study interesting properties and useful examples of n-semi-Armendariz rings, constructing various kinds of counterexamples in the process.

ON COMMUTATIVITY OF NILPOTENT ELEMENTS AT ZERO

  • Abdul-Jabbar, Abdullah M.;Ahmed, Chenar Abdul Kareem;Kwak, Tai Keun;Lee, Yang
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.4
    • /
    • pp.811-826
    • /
    • 2017
  • The reversible property of rings was initially introduced by Habeb and plays a role in noncommutative ring theory. In this note we study the reversible ring property on nilpotent elements, introducing the concept of commutativity of nilpotent elements at zero (simply, a CNZ ring) as a generalization of reversible rings. We first find the CNZ property of 2 by 2 full matrix rings over fields, which provides a basis for studying the structure of CNZ rings. We next observe various kinds of CNZ rings including ordinary ring extensions.

A GENERALIZATION OF SYMMETRIC RING PROPERTY

  • Kim, Hong Kee;Kwak, Tai Keun;Lee, Seung Ick;Lee, Yang;Ryu, Sung Ju;Sung, Hyo Jin;Yun, Sang Jo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.5
    • /
    • pp.1309-1325
    • /
    • 2016
  • This note focuses on a ring property in which upper and lower nilradicals coincide, as a generalizations of symmetric rings. The concept of symmetric ideal and ring in the noncommutative ring theory was initially introduced by Lambek, as an extension of the usual commutative ideal theory. The investigation of symmetric rings provided many useful results to the study in the noncommutative ring theory. So the results obtained from this study may be applicable to observing the structure of zero divisors in various kinds of algebraic systems containing matrix rings and polynomial rings.