ON SEMI-ARMENDARIZ MATRIX RINGS

Kamil KozŁowski and Ryszard Mazurek

Abstract

Given a positive integer n, a ring R is said to be n-semiArmendariz if whenever $f^{n}=0$ for a polynomial f in one indeterminate over R, then the product (possibly with repetitions) of any n coefficients of f is equal to zero. A ring R is said to be semi-Armendariz if R is n-semi-Armendariz for every positive integer n. Semi-Armendariz rings are a generalization of Armendariz rings. We characterize when certain important matrix rings are n-semi-Armendariz, generalizing some results of Jeon, Lee and Ryu from their paper (J. Korean Math. Soc. 47 (2010), 719-733), and we answer a problem left open in that paper.

1. Introduction

Throughout this paper, all rings are associative, and all rings have an identity except where explicitly indicated. For a ring R, the ring of polynomials in the indeterminate x over R is denoted by $R[x]$, and if $A \subseteq R$, then $A[x]$ stands for the set of polynomials in $R[x]$ whose all coefficients belong to A.

Recall that a ring R is said to be an Armendariz ring if whenever the product of two polynomials over R is zero, then the products of their coefficients are all zero, that is, in the polynomial ring $R[x]$ the following holds:

$$
\begin{align*}
& \text { for any } f=\sum_{i=0}^{k} a_{i} x^{i}, g=\sum_{j=0}^{m} b_{j} x^{j} \in R[x], \tag{1}\\
& \text { if } f g=0 \text {, then } a_{i} b_{j}=0 \text { for all } i, j .
\end{align*}
$$

The name for such rings was chosen to honor E. P. Armendariz, who noted in [2] that all reduced rings (i.e., rings containing no nonzero nilpotent elements) satisfy condition (1). Various interesting properties and constructions of Armendariz rings can be found, e.g., in [1], [4], [6], [8], [11], [13], [14] and [15].

Armendariz rings, as well as many other classes of Armendariz-like rings, have recently been objects of intensive investigation (see [13]). These new

[^0]classes of Armendariz-like rings were defined using generalizations or modifications of condition (1). For example, by replacing in (1) the polynomial ring $R[x]$ with the power series ring $R[[x]]$, one obtains the definition of a powerserieswise Armendariz ring, introduced by N. K. Kim, K. H. Lee, and Y. Lee in [9]. By replacing in (1) the requirement that the products $a_{i} b_{j}$ are all zero with the condition that the products $a_{i} b_{j}$ are all nilpotent, we obtain the definition of a weak Armendariz ring, introduced by Z. Liu and R. Zhao in [12]. By considering in (1) the square of a single polynomial instead of the product of two polynomials, we obtain the definition of a 2 -semi-Armendariz ring, introduced by Y. C. Jeon, Y. Lee and S. J. Ryu in [7], according to which a ring R is said to be 2 -semi-Armendariz provided for any polynomial $f=\sum_{i=0}^{m} a_{i} x^{i} \in R[x]$, if $f^{2}=0$, then $a_{i} a_{j}=0$ for all i, j.

More generally, for a positive integer n, in [7] Jeon, Lee and Ryu define a ring R to be n-semi-Armendariz if for any polynomial $f=\sum_{i=0}^{m} a_{i} x^{i} \in R[x]$, $f^{n}=0$ implies $a_{i_{1}} a_{i_{2}} \cdots a_{i_{n}}=0$ for any subset $\left\{i_{1}, i_{2}, \ldots, i_{n}\right\} \subseteq\{0,1, \ldots, m\}$, and they call a ring R a semi-Armendariz ring if R is n-semi-Armendariz for every positive integer n. The following well-known result of D. D. Anderson and V. Camillo shows that all Armendariz rings are semi-Armendariz.

Proposition 1.1 ([1, Proposition 1]). Suppose R is an Armendariz ring. If $f_{1}, f_{2}, \ldots, f_{n} \in R[x]$ are such that $f_{1} f_{2} \cdots f_{n}=0$, then $a_{1} a_{2} \cdots a_{n}=0$, where a_{i} is a coefficient of f_{i}.

The following proposition summarizes basic properties of n-semi-Armendariz rings and semi-Armendariz rings.

Proposition 1.2 (see [7]).
(a) Every subring of an n-semi-Armendariz ring is n-semi-Armendariz.
(b) Direct sum of n-semi-Armendariz rings is n-semi-Armendariz.
(c) A ring R is n-semi-Armendariz if and only if the ring $R[x]$ is n-semiArmendariz.
(d) If a ring R is semi-Armendariz, then $\operatorname{nil}(R[x]) \subseteq \operatorname{nil}(R)[x]$, where $\operatorname{nil}(A)$ denotes the set of nilpotent elements of a ring A.

The aim of this paper is to characterize when some important matrix rings are n-semi-Armendariz. The motivation for this work were results of Jeon, Lee and Ryu from their paper [7] and a problem left open in [7].

In [7, Theorem 1.2] it was proved that for any $n \geq 2$ the $n \times n$ upper triangular matrix ring $U_{n}(R)$ over a ring R is n-semi-Armendariz if and only if R is reduced. In Section 2 we extend this and some other results of [7] to the ring of upper triangular $n \times n$ matrices over a ring R whose diagonal entries belong to a given subring S of R (see Proposition 2.4 and Theorem 2.5).

For a ring R and an integer $n \geq 2$, the ring $D_{n}(R)$ of upper triangular $n \times n$ matrices over R whose diagonal entries are equal is a subring of $U_{n}(R)$. Hence it follows from the aforementioned result [7, Theorem 1.2] and Proposition 1.2(a)
that if R is a reduced ring, then the ring $D_{n}(R)$ is n-semi-Armendariz. It is natural to ask, whether the implication can be reversed, that is whether a ring R has to be reduced if the ring $D_{n}(R)$ is n-semi-Armendariz. In [7] the problem was left unsolved. In Section 3 we show that for any integer $n \geq 2$ the answer to the problem is negative (see Example 3.2). The answer follows easily from a general result (Theorem 3.1), which also allows to construct further examples important for the theory of n-semi-Armendariz rings (see Examples 3.4 and 3.6).

In this paper, the full ring of $n \times n$ matrices over a ring R is denoted by $M_{n}(R)$, and the ring of upper triangular $n \times n$ matrices over R is denoted by $U_{n}(R)$. For a matrix $A \in M_{n}(R)$ and any $i, j \in\{1,2, \ldots, n\}$ the (i, j) entry of A is denoted by $A^{(i j)}$. The symbol $E_{i j}$ stands for the matrix with (i, j) entry equal to 1 and all other entries equal to 0 (dimensions of the matrix $E_{i j}$ will be clear from the context). The canonical ring isomorphism of $M_{n}(R)[x]$ onto $M_{n}(R[x])$ is denoted by Φ. Recall that the isomorphism $\Phi: M_{n}(R)[x] \rightarrow M_{n}(R[x])$ maps a polynomial

$$
f=A_{0}+A_{1} x+A_{2} x^{2}+\cdots+A_{k} x^{k} \in M_{n}(R)[x]
$$

to the $n \times n$ matrix $\Phi(f)$ over $R[x]$ whose (i, j) entry is the polynomial

$$
A_{0}^{(i j)}+A_{1}^{(i j)} x+A_{2}^{(i j)} x^{2}+\cdots+A_{k}^{(i j)} x^{k} \in R[x]
$$

for all $i, j \in\{1,2, \ldots, n\}$. We will usually consider the isomorphism Φ restricted to a concrete subring of the ring $M_{n}(R)$; such a restriction will still be denoted by Φ.

2. n-semi-Armendariz matrix rings

The aim of this section is to identify n-semi-Armendariz subrings of the full matrix ring $M_{m}(R)$, where R is a ring and $m \geq 2$. We start by showing that the ring $M_{m}(R)$ is never n-semi-Armendariz for $n \geq 2$.
Proposition 2.1. Let R be a ring and let $m, n \geq 2$ be integers. Then the ring $M_{m}(R)$ is not n-semi-Armendariz.
Proof. Let $f=A_{0}+A_{1} x+A_{2} x^{2} \in M_{m}(R)[x]$, where

$$
A_{0}=E_{1 m}, A_{1}=E_{11}-E_{m m}, A_{2}=-E_{m 1}
$$

Then $f^{2}=0$ and thus $f^{n}=0$. Since $A_{1}^{n}=E_{11}+(-1)^{n} E_{m m} \neq 0$, the ring $M_{m}(R)$ is not n-semi-Armendariz.

It is well known that for every $n \geq 2$ and arbitrary ring R, the upper triangular matrix ring $U_{n}(R)$ is not Armendariz (see [8, Example 1]). However, for any reduced ring R the ring $U_{n}(R)$ is n-semi-Armendariz, which was proved in [7, Theorem 1.2] (and which shows that the class of n-semi-Armendariz rings is indeed wider than the class of Armendariz rings). In Theorem 2.5 below, we generalize this result by showing that for any reduced subring S of an arbitrary ring R, the upper triangular $n \times n$ matrices over R whose diagonal entries
belong to S form an n-semi-Armendariz ring. The following observation will be useful in our proofs.

Lemma 2.2. Let R be a ring, let I be an ideal of R such that the factor ring R / I is reduced, and let m be a positive integer such that $I^{m}=0$. Then R is n-semi-Armendariz for every $n \geq m$.

Proof. Clearly, the set $I[x]$ of polynomials from $R[x]$ with all coefficients in I is an ideal of $R[x]$. Since the ring R / I is reduced, so is the ring $R[x] / I[x] \cong$ $(R / I)[x]$. Therefore, if a polynomial $f=a_{0}+a_{1} x+\cdots+a_{k} x^{k} \in R[x]$ satisfies $f^{n}=0$, then $f \in I[x]$ and thus $a_{i} \in I$ for any i. Hence, if $n \geq m$, then for any $i_{1}, i_{2}, \ldots, i_{n} \in\{0,1, \ldots, k\}$ we have $a_{i_{1}} a_{i_{2}} \cdots a_{i_{n}} \in I^{n} \subseteq I^{m}=0$, which proves that the ring R is n-semi-Armendariz.

An immediate consequence of Lemma 2.2 is [7, Proposition 2.6]. Example 3.4 shows that the condition that R / I is reduced in Lemma 2.2 is not superfluous.

Remark 2.3. Let R be a ring. Recall that an ideal J of R is said to be completely prime if the factor ring R / J is a domain. The intersection of all completely prime ideals of R is called the generalized nil radical of R and denoted by $\mathcal{N}_{g}(R)$ (see [3, Example 3.8.16]). Note that if I is an ideal of R such that the ring R / I is reduced and $I^{m}=0$ for some positive integer m, then $I=\mathcal{N}_{g}(R)$. Indeed, since $I^{m}=0$, we deduce that I is contained in every completely prime ideal of R and $I \subseteq \mathcal{N}_{g}(R)$ follows. The opposite inclusion is an immediate consequence of the fact that any reduced ring is a subdirect product of domains (see [10, Theorem 12.7]). Thus $I=\mathcal{N}_{g}(R)$, as desired. Therefore, Lemma 2.2 can alternatively be formulated as follows: If R is a ring such that $\mathcal{N}_{g}(R)^{m}=0$ for some positive integer m, then R is n-semi-Armendariz for every $n \geq m$.

Let S be a subring of a ring R. For any positive integer n we set

$$
U_{n}(S, R)=\left\{A \in U_{n}(R) \mid A^{(i i)} \in S \text { for every } i \in\{1,2, \ldots, n\}\right\}
$$

i.e., $U_{n}(S, R)$ consists of all upper triangular $n \times n$ matrices over R whose diagonal entries belong to S. Clearly, $U_{n}(S, R)$ is a subring of $U_{n}(R)$. Moreover, we set

$$
N_{n}(R)=\left\{A \in U_{n}(R) \mid A^{(i i)}=0 \text { for every } i \in\{1,2, \ldots, n\}\right\},
$$

i.e., $N_{n}(R)$ is the set of upper triangular $n \times n$ matrices over R with all diagonal entries equal to zero. Obviously, $N_{n}(R)$ is an ideal of both $U_{n}(R)$ and $U_{n}(S, R)$.

The following result will be helpful in proving that some matrix rings of the form $U_{n}(S, R)$ are k-semi-Armendariz.

Proposition 2.4. Let S be a subring of $a \operatorname{ring} R$ and let n be a positive integer. If there exists an ideal I of R such that $I \subseteq S$, and the ring S / I is reduced, and $I^{m}=0$ for some positive integer m, then the ring $U_{n}(S, R)$ is k-semi-Armendariz for every $k \geq n+m-1$.

Proof. Since I is an ideal of R, the set

$$
J=\left\{A \in U_{n}(S, R) \mid A^{(i i)} \in I \text { for every } i \in\{1,2, \ldots, n\}\right\}
$$

is an ideal of $U_{n}(S, R)$. Furthermore, the factor ring $U_{n}(S, R) / J$ is isomorphic to the direct sum of n copies of the reduced ring S / I and thus also $U_{n}(S, R) / J$ is reduced. Hence by Lemma 2.2, to complete the proof it suffices to show that $J^{n+m-1}=0$. For this, it is enough to show that

$$
\text { for any } A_{1}, A_{2}, \ldots, A_{n+m-1} \in J \text { we have } A_{1} A_{2} \cdots A_{n+m-1}=0
$$

Note that for any $i, j \in\{1,2, \ldots, n\}$ the (i, j) entry of the matrix $A_{1} A_{2} \cdots A_{n+m-1}$ is a sum of products of the form
(2) $A_{1}^{\left(k_{1} k_{2}\right)} A_{2}^{\left(k_{2} k_{3}\right)} A_{3}^{\left(k_{3} k_{4}\right)} \cdots A_{n+m-1}^{\left(k_{n+m-1} k_{n+m}\right)}$, where $k_{1}=i$ and $k_{n+m}=j$.

If $k_{l}>k_{l+1}$ for some $l \in\{1,2, \ldots, n+m-1\}$, then $A_{l}^{\left(k_{l} k_{l+1}\right)}=0$ and thus the product (2) is equal to 0 in this case. Otherwise we have

$$
1 \leq i=k_{1} \leq k_{2} \leq k_{3} \leq \cdots \leq k_{n+m-1} \leq k_{n+m}=j \leq n
$$

Hence in this case there must exist at least m pairs $\left(k_{l}, k_{l+1}\right)$ with $k_{l}=k_{l+1}$, and since $A_{l} \in J$, for any such a pair $\left(k_{l}, k_{l+1}\right)$ we have $A_{l}^{\left(k_{l} k_{l+1}\right)} \in I$. Consequently, the product (2) belongs to I^{m} and thus it is equal to zero. Therefore, $A_{1} A_{2} \cdots A_{n+m-1}=0$.

The following result extends [7, Theorem 1.2] to matrix rings of the form $U_{n}(S, R)$, with a different proof than that given in [7].

Theorem 2.5. Let S be a subring of a ring R and let $n \geq 2$ be an integer. Then
(a) The following conditions are equivalent:
(i) $U_{n}(S, R)$ is n-semi-Armendariz;
(ii) $U_{n}(S, R)$ is k-semi-Armendariz for every integer $k \geq n$;
(iii) S is reduced.
(b) $U_{n+1}(S, R)$ is n-semi-Armendariz if and only if S is reduced and R is Armendariz.

Proof. (a) (i) \Rightarrow (iii): Assume $U_{n}(S, R)$ is n-semi-Armendariz. Then by Proposition 1.2(a), the ring $U_{n}(S)$ is n-semi-Armendariz. Hence by [7, Theorem 1.2], the ring S is reduced.
(iii) \Rightarrow (ii): Apply Proposition 2.4 with $I=0$ and $m=1$.
(ii) \Rightarrow (i): Obvious.
(b) We will use the following observation:

For any ring T and matrices $B_{1}, B_{2}, \ldots, B_{n} \in N_{n+1}(T)$ we have

$$
\begin{equation*}
B_{1} B_{2} \cdots B_{n}=B_{1}^{(1,2)} B_{2}^{(2,3)} \cdots B_{n}^{(n, n+1)} E_{1, n+1} \tag{3}
\end{equation*}
$$

To establish (3), note that for any $i, j \in\{1,2, \ldots, n+1\}$ the (i, j) entry of $B_{1} B_{2} \cdots B_{n}$ is a sum of products of the form

$$
\begin{equation*}
B_{1}^{\left(k_{1} k_{2}\right)} B_{2}^{\left(k_{2} k_{3}\right)} B_{3}^{\left(k_{3} k_{4}\right)} \cdots B_{n}^{\left(k_{n} k_{n+1}\right)} \text {, where } k_{1}=i \text { and } k_{n+1}=j \tag{4}
\end{equation*}
$$

For any $l \in\{1,2, \ldots, n\}$ we have $B_{l} \in N_{n+1}(T)$ and thus if $k_{l} \geq k_{l+1}$, then $B_{l}^{\left(k_{l} k_{l+1}\right)}=0$. Hence the product (4) can be nonzero only in the case when

$$
1 \leq i=k_{1}<k_{2}<k_{3}<\cdots<k_{n}<k_{n+1}=j \leq n+1
$$

that is, when $k_{l}=l$ for every $l \in\{1,2, \ldots, n+1\}$. Now (3) follows.
To prove (b), set $V=U_{n+1}(S, R)$ and $N=N_{n+1}(R)$. Assume V is n-semiArmendariz. Since $U_{n}(S, R)$ is isomorphic to a subring of V, the ring $U_{n}(S, R)$ is n-semi-Armendariz by Proposition $1.2(\mathrm{a})$, and thus by the already proved part (a), the ring S is reduced. To show that R is Armendariz, consider any polynomials $f=a_{0}+a_{1} x+\cdots+a_{k} x^{k}, g=b_{0}+b_{1} x+\cdots+b_{l} x^{l} \in R[x]$ such that $f g=0$. Without loss of generality we can assume that $k=l$. For any $m \in\{0,1, \ldots, k\}$ we set

$$
A_{m}=a_{m} E_{12}+b_{m} E_{23}+E_{34}+\cdots+E_{n, n+1} \in N
$$

and we put

$$
h=A_{0}+A_{1} x+\cdots+A_{k} x^{k} \in N[x] .
$$

Let $\Phi: U_{n+1}(R)[x] \rightarrow U_{n+1}(R[x])$ be the canonical isomorphism, and let $H=$ $\Phi(h)$. Since $h \in N[x]$, it follows that $H \in N_{n+1}(R[x])$. Hence (3) implies
$H^{n}=H^{(1,2)} H^{(2,3)} H^{(3,4)} \cdots H^{(n, n+1)} E_{1, n+1}=f g\left(1+x+\cdots+x^{k}\right)^{n-2} E_{1, n+1}=0$, and thus $h^{n}=0$. Since V is n-semi-Armendariz and $h^{n}=0$, it follows that $A_{i} A_{j} A_{1}^{n-2}=0$ for any i, j. Since $A_{i}, A_{j}, A_{1} \in N,(3)$ implies

$$
a_{i} b_{j}=A_{i}^{(1,2)} A_{j}^{(2,3)} A_{1}^{(3,4)} \cdots A_{1}^{(n, n+1)}=0,
$$

which proves that R is Armendariz.
To prove the converse, assume S is reduced and R is Armendariz, and consider any polynomial $q=A_{0}+A_{1} x+\cdots+A_{k} x^{k} \in V[x]$ with $q^{n}=0$. We claim that $A_{i} \in N$ for each i. To see this, note that since S is reduced and N is an ideal of V such that V / N is isomorphic to the direct sum of $n+1$ copies of S, the ring V / N is reduced, and thus so is the ring $V[x] / N[x] \cong(V / N)[x]$. Hence $q^{n}=0$ yields $q \in N[x]$, which proves our claim.

Let $\Phi: U_{n+1}(R)[x] \rightarrow U_{n+1}(R[x])$ be the canonical isomorphism, and let $Q=\Phi(q)$. Since $q \in N[x]$, it follows that $Q \in N_{n+1}(R[x])$. Furthermore, $Q^{n}=\Phi\left(q^{n}\right)=\Phi(0)=0$, and thus (3) implies

$$
Q^{(1,2)} Q^{(2,3)} \cdots Q^{(n, n+1)}=0
$$

Hence, if for any $i \in\{1,2, \ldots, n\}$ we set

$$
f_{i}=A_{0}^{(i, i+1)}+A_{1}^{(i, i+1)} x+\cdots+A_{k}^{(i, i+1)} x^{k} \in R[x],
$$

then $f_{1} f_{2} \cdots f_{n}=0$. Since R is Armendariz, by Proposition 1.1 we have

$$
A_{s_{1}}^{(1,2)} A_{s_{2}}^{(2,3)} \cdots A_{s_{n}}^{(n, n+1)}=0 \text { for any } n \text {-tuple }\left(s_{1}, s_{2}, \ldots, s_{n}\right)
$$

and (3) implies $A_{s_{1}} A_{s_{2}} \cdots A_{s_{n}}=0$. Thus V is n-semi-Armendariz.
As an immediate consequence of the above theorem we obtain [7, Theorem 1.2], which is just the first part of the following corollary. The second part says that if R is a reduced ring, then $U_{n}(R)$ is a maximal n-semi-Armendariz subring of the full matrix ring $M_{n}(R)$.

Corollary 2.6. For any ring R and integer $n \geq 2$, the following conditions are equivalent:
(i) $U_{n}(R)$ is n-semi-Armendariz;
(ii) $U_{n}(R)$ is k-semi-Armendariz for every $k \geq n$;
(iii) $U_{n+1}(R)$ is n-semi-Armendariz;
(iv) R is reduced.

If any of these equivalent conditions holds, then $U_{n}(R)$ is a maximal n-semiArmendariz subring of $M_{n}(R)$.

Proof. Since reduced rings are Armendariz, Theorem 2.5 implies that (i), (ii), (iii), and (iv) are equivalent. To prove the second part of the corollary, assume R is reduced and T is an n-semi-Armendariz subring of $M_{n}(R)$ such that $U_{n}(R) \varsubsetneqq T$. Then there exists a matrix $A \in T$ such that for some $i>j$ the (i, j) entry of A, say a, is non-zero. Since $E_{i i}, E_{j j} \in T$, also $E_{i i} A E_{j j}=a E_{i j} \in T$. Thus for the matrices $A_{0}=a E_{i j}, A_{1}=a E_{i i}-a E_{j j}$ and $A_{2}=-a E_{j i}$ we have $f=A_{0}+A_{1} x+A_{2} x^{2} \in T[x]$. It is easy to see that $f^{2}=0$, and thus $f^{n}=0$. Since T is n-semi-Armendariz, $0=A_{1}^{n}=a^{n} E_{i i}-a^{n} E_{j j}$. Hence $a^{n}=0$, and since R is reduced, we obtain $a=0$, a contradiction.

The following result is an immediate consequence of Corollary 2.6.
Corollary 2.7 (cf. [7, Corollary 1.3]). For any ring R the following conditions are equivalent:
(i) R is reduced;
(ii) $U_{2}(R)$ is semi-Armendariz;
(iii) $U_{3}(R)$ is semi-Armendariz.

Given integers $n \geq 2$ and $m \geq n+2$, in the context of the first part of Corollary 2.6 it is natural to ask, when for a ring R the ring $U_{m}(R)$ is n-semiArmendariz. The following result shows that the answer is "never" (cf. [7, Example 1.6]).

Proposition 2.8. Let R be a ring and let $n \geq 2$ be an integer. Then for any integer $m \geq n+2$ the ring $U_{m}(R)$ is not n-semi-Armendariz.

The proof of Proposition 2.8 will be based on the following lemma. In the statement of the lemma, in an obvious way, we extend the notion of an n-semiArmendariz ring to rings without unity. Recall that $N_{n+2}(R)$ consists of upper
triangular $(n+2) \times(n+2)$ matrices over R with all diagonal entries equal to zero. Clearly, $N_{n+2}(R)$ is a non-unital subring of $U_{n+2}(R)$ (even more: it is an ideal of $U_{n+2}(R)$).

Lemma 2.9. For any ring R and integer $n \geq 2$ the non-unital ring $N_{n+2}(R)$ is not n-semi-Armendariz.

Proof. We start the proof with the case $n=2$. Set $A=E_{12}+E_{34}$ and $B=E_{12}+E_{13}-E_{24}+E_{34}$. Then $f=A+B x \in N_{4}(R)[x]$ and $f^{2}=0$, but $A B=-E_{14} \neq 0$ and thus $N_{4}(R)$ is not 2-semi-Armendariz.

Next assume that $n \geq 3$. In this case we simply repeat arguments of $[7$, Example 1.6]. We set

$$
\begin{gathered}
A=E_{12}+E_{23}+\cdots+E_{n-2, n-1}+E_{n-1, n+1}+E_{n, n+2} \in N_{n+2}(R), \\
B=E_{n-1, n}+E_{n-1, n+1}+E_{n, n+2}-E_{n+1, n+2} \in N_{n+2}(R) .
\end{gathered}
$$

It is easy to verify that $B^{2}=B A^{2}=B A B=0$,

$$
A^{k}=E_{1, k+1}+E_{2, k+2}+\cdots+E_{n-k-1, n-1}+E_{n-k, n+1} \text { for } 2 \leq k \leq n-2
$$

and $A^{n-1}=E_{1, n+1}$. Hence for $f=A+B x \in N_{n+2}(R)[x]$ we have

$$
f^{n}=A^{n}+\left(A^{n-2} B A+A^{n-1} B\right) x=\left(E_{1, n+2}-E_{1, n+2}\right) x=0 .
$$

Since $A^{n-2} B A=E_{1, n+2} \neq 0$, the ring $N_{n+2}(R)$ is not n-semi-Armendariz.
Now we are ready to prove Proposition 2.8.
Proof of Proposition 2.8. From Proposition 1.2(a) and Lemma 2.9 we deduce that the ring $U_{n+2}(R)$ is not n-semi-Armendariz. To complete the proof, consider any integer $m \geq n+2$. Then the ring $U_{n+2}(R)$ is isomorphic to a subring of $U_{m}(R)$. Since the ring $U_{n+2}(R)$ is not n-semi-Armendariz, Proposition 1.2(a) implies that $U_{m}(R)$ is not n-semi-Armendariz.

Let R be a ring and let n, k be integers such that $2 \leq n<k$. By Corollary $2.6, R$ being reduced implies that the ring $U_{n}(R)$ is k-semi-Armendariz. The following example shows that the opposite implication is not true.

Example 2.10. (For any $2 \leq n<k$ there exists a nonreduced ring R such that the ring $U_{n}(R)$ is k-semi-Armendariz.) Let p be a prime number, and let $m=k-n+1$. Let $R=\mathbb{Z}_{p^{m}}$ be the ring of integers modulo p^{m} and let $I=(p)$ be the ideal of R generated by p. Then the factor ring $R / I \cong \mathbb{Z}_{p}$ is reduced and $I^{m}=0$. Hence by Proposition 2.4 the ring $U_{n}(R)$ is k-semi-Armendariz. Furthermore, since $m \geq 2$, the ring R is not reduced.

Corollary 2.6 implies that the ring $U_{n}(R)$ constructed in Example 2.10 is not n-semi-Armendariz. Hence, the same example shows also that for any $2 \leq n<k$ there exists a k-semi-Armendariz ring that is not n-semi-Armendariz (cf. [7, p. 725]).

3. Answer to Jeon-Lee-Ryu's problem

Given an integer $n \geq 2$, in [7, Theorem 1.2] Jeon, Lee and Ryu characterized rings R for which the ring $U_{n}(R)$ is n-semi-Armendariz. Namely, they proved that $U_{n}(R)$ is n-semi-Armendariz if and only if R is reduced (see also Corollary 2.6). Since the set

$$
D_{n}(R)=\left\{A \in U_{n}(R) \mid A^{(1,1)}=A^{(2,2)}=\cdots=A^{(n, n)}\right\}
$$

(i.e., the set of all upper triangular $n \times n$ matrices over R whose diagonal entries are equal) is a subring of $U_{n}(R)$, it follows from Proposition 1.2(a) that if R is a reduced ring, then the ring $D_{n}(R)$ is n-semi-Armendariz. It is natural to ask, whether the implication can be reversed, which led the authors of [7] to the following problem (see [7, p. 724, the paragraph preceding Proposition 1.5]):
(5) Problem: If $n \geq 2$ and the ring $D_{n}(R)$ is n-semi-Armendariz, must R be a reduced ring?
In [7] the problem was left unsolved. In Example 3.2 we will show that the answer to the problem is negative for any integer $n \geq 2$. The answer will easily follow from the general Theorem 3.1.

The main reason why in Theorem 3.1 we focus on rings $D_{n}(S)$ with S of the form $S=D_{2}(R)$ is that the $\operatorname{ring} S=D_{2}(R)$ is never reduced, so in the context of Jeon-Lee-Ryu's problem (5) it is natural to ask, when the ring $D_{n}(S)=D_{n}\left(D_{2}(R)\right)$ is n-semi-Armendariz. In the theorem below we answer this question in the case where the ring R is reduced and commutative.

For a ring R, if n is a positive integer and $r \in R$, then $n r$ denotes the sum $r+r+\cdots+r$ with n summands.

Theorem 3.1. Let R be a reduced commutative ring and let n be a positive integer. Then the following conditions are equivalent:
(i) The ring $D_{n}\left(D_{2}(R)\right)$ is n-semi-Armendariz;
(ii) The ring $\left(D_{2}(R)[x]\right) /\left(x^{n}\right)$ is n-semi-Armendariz, where $\left(x^{n}\right)$ denotes the ideal of $D_{2}(R)[x]$ generated by x^{n};
(iii) $n r=0 \Rightarrow r=0$ for any $r \in R$.

Proof. The case $n=1$ is trivial, because every ring is obviously 1 -semi-Armendariz. Thus to the end of the proof we assume that $n \geq 2$.
(i) \Rightarrow (ii): Assume the ring $D_{n}\left(D_{2}(R)\right)$ is n-semi-Armendariz. The factor ring $\left(D_{2}(R)[x]\right) /\left(x^{n}\right)$ is isomorphic to the matrix ring

$$
\left\{\left.\left(\begin{array}{ccccc}
A_{1} & A_{2} & \cdots & A_{n-1} & A_{n} \\
0 & A_{1} & \ddots & & A_{n-1} \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & \ddots & A_{1} & A_{2} \\
0 & 0 & \cdots & 0 & A_{1}
\end{array}\right) \right\rvert\, A_{1}, A_{2}, \ldots, A_{n} \in D_{2}(R)\right\}
$$

which is a subring of $D_{n}\left(D_{2}(R)\right)$. Hence Proposition 1.2(a) implies that the ring $\left(D_{2}(R)[x]\right) /\left(x^{n}\right)$ is n-semi-Armendariz.
(ii) \Rightarrow (iii): Put $P=\left(D_{2}(R)[x]\right) /\left(x^{n}\right)$ and assume P is n-semi-Armendariz. We will use the bar notation for elements of P, that is, for any $h \in D_{2}(R)[x]$ we will write \bar{h} to denote the coset $h+\left(x^{n}\right) \in P$. Let $r \in R$ be such that $n r=0$. Set

$$
A=\left(\begin{array}{ll}
r & 0 \\
0 & r
\end{array}\right), B=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \in D_{2}(R)
$$

and consider the polynomial $f=\bar{A} \bar{x}+\bar{B} t \in P[t]$. Note that in P we have

$$
\bar{A} \bar{B}=\bar{B} \bar{A}, \bar{B}^{2}=0, \bar{x}^{n}=0, \text { and } n \bar{A}=0 .
$$

Hence, by the binomial theorem,

$$
f^{n}=(\bar{A} \bar{x}+\bar{B} t)^{n}=\sum_{i=0}^{n}\binom{n}{i}(\bar{A} \bar{x})^{n-i}(\bar{B} t)^{i}=\bar{A}^{n} \bar{x}^{n}+n \bar{A}^{n-1} \bar{x}^{n-1} \bar{B} t=0
$$

Since the ring P is n-semi-Armendariz, it follows that $(\bar{A} \bar{x})^{n-1} \bar{B}=0$ and thus $A^{n-1} B x^{n-1} \in\left(x^{n}\right)$. Hence $A^{n-1} B=0$ and consequently $r^{n-1}=0$. Since R is reduced, we obtain $r=0$, as desired.
(iii) \Rightarrow (i): Set $D(R)=D_{n}\left(D_{2}(R)\right)$. To the end of the proof the ring $D(R)$ is considered as a subring of $U_{2 n}(R)$. For any $B \in D(R)$ and $i, j \in\{1,2, \ldots, 2 n\}$, $B^{(i j)}$ denotes the (i, j) entry of the matrix B.

Obviously $N(R)=\left\{B \in D(R): B^{(i i)}=0\right.$ for any $\left.i \in\{1,2, \ldots, 2 n\}\right\}$ is an ideal of $D(R)$. We start with describing the form of any product of n matrices from $N(R)$, which will be crucial in the proof of the implication (iii) \Rightarrow (i). The reader should note that in this part of the proof we do not put any assumption on the ring R.

Let $B_{1}, B_{2}, \ldots, B_{n} \in N(R)$ and let $B=B_{1} B_{2} \cdots B_{n}$. Then for any $i, j \in$ $\{1,2, \ldots, 2 n\}$, the (i, j) entry of B is a sum of products of the form

$$
\begin{equation*}
b=B_{1}^{\left(k_{0} k_{1}\right)} B_{2}^{\left(k_{1} k_{2}\right)} B_{3}^{\left(k_{2} k_{3}\right)} \cdots B_{n}^{\left(k_{n-1} k_{n}\right)}, \text { where } k_{0}=i \text { and } k_{n}=j \tag{6}
\end{equation*}
$$

Assume $b \neq 0$. Then $B_{t}^{\left(k_{t} k_{t+1}\right)} \neq 0$ for every $t \in\{0,1, \ldots, n-1\}$, and since $B_{t} \in N(R)$, it follows that $k_{t}<k_{t+1}$. Thus

$$
1 \leq i=k_{0}<k_{1}<k_{2}<\cdots<k_{n-1}<k_{n}=j \leq 2 n .
$$

Notice that for any matrix $A \in D(R)=D_{n}\left(D_{2}(R)\right)$ we have $A^{(p q)}=0$ for every pair (p, q) with even p and odd q. Hence, since $b \neq 0$, if k_{t} is even for some $t \in\{0,1, \ldots, n-1\}$, then so are $k_{t+1}, k_{t+2}, \ldots, k_{n}$. In particular, if k_{0} would be even, then so would be $k_{1}, k_{2}, \ldots, k_{n}$, and we would obtain $n+1$ even integers in the interval $\langle 1,2 n\rangle$, a contradiction. Thus k_{0} is odd. If also $k_{1}, k_{2}, \ldots, k_{n}$ would be odd, then there would be $n+1$ odd integers between 1 and $2 n$, a contradiction. Therefore, there exists $m \in\{1,2, \ldots, n\}$ such that $k_{0}, k_{1}, \ldots, k_{m-1}$ are odd and $k_{m}, k_{m+1}, \ldots, k_{n}$ are even. Hence

$$
\begin{equation*}
k_{0}+2(m-1) \leq k_{m-1} \quad \text { and } \quad k_{m} \leq k_{n}-2(n-m) \tag{7}
\end{equation*}
$$

Since furthermore $k_{m-1}<k_{m}$, it follows from (7) that $2 n-1 \leq k_{n}-k_{0}$, and thus $k_{0}=1$ and $k_{n}=2 n$. Putting these values of k_{0} and k_{n} into (7), we obtain $k_{m-1}=2 m-1$ and $k_{m}=2 m$.

By the above, if $b \neq 0$, then $i=1, j=2 n$ and the sequence

$$
\left(k_{0}, k_{1}, k_{2}, \ldots, k_{n-1}, k_{n}\right)
$$

is of the following form:

$$
\begin{equation*}
(\underbrace{1,3, \ldots, 2 m-1}_{\text {odd integers }}, \underbrace{2 m, 2 m+2, \ldots, 2 n}_{\text {even integers }}), \text { for some } m \in\{1,2, \ldots, n\} \tag{8}
\end{equation*}
$$

The sequence (8) will be denoted by γ_{m} and the set of all such sequences will be denoted by \mathcal{C}_{n}, i.e., $\mathcal{C}_{n}=\left\{\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}\right\}$. For example, \mathcal{C}_{4} consists of the following four sequences:

$$
\gamma_{1}=(1,2,4,6,8), \quad \gamma_{2}=(1,3,4,6,8), \quad \gamma_{3}=(1,3,5,6,8), \quad \gamma_{4}=(1,3,5,7,8)
$$

To simplify notation, for any $\gamma=\left(k_{0}, k_{1}, \ldots, k_{n-1}, k_{n}\right) \in \mathcal{C}_{n}$, the product (6) will be denoted by $\gamma\left(B_{1}, B_{2}, \ldots, B_{n}\right)$, i.e.,

$$
\gamma\left(B_{1}, B_{2}, \ldots, B_{n}\right)=B_{1}^{\left(k_{0} k_{1}\right)} B_{2}^{\left(k_{1} k_{2}\right)} B_{3}^{\left(k_{2} k_{3}\right)} \cdots B_{n}^{\left(k_{n-1} k_{n}\right)}
$$

Summarizing, and using the just introduced notation, if $B_{1}, B_{2}, \ldots, B_{n} \in$ $N(R)$, then the $(1,2 n)$ entry of the product $B_{1} B_{2} \cdots B_{n}$ is equal to the sum $\sum_{m=1}^{n} \gamma_{m}\left(B_{1}, B_{2}, \ldots, B_{n}\right)$, and all other entries are equal to 0 , i.e.,

$$
\begin{equation*}
B_{1} B_{2} \cdots B_{n}=\left(\sum_{m=1}^{n} \gamma_{m}\left(B_{1}, B_{2}, \ldots, B_{n}\right)\right) E_{1,2 n} \tag{9}
\end{equation*}
$$

Now we are in a position to prove the implication (iii) \Rightarrow (i). Assume R is a reduced commutative ring and $n \geq 2$ is an integer satisfying (iii), i.e., we have $n r=0 \Rightarrow r=0$ for any $r \in R$. To prove (i), we consider an arbitrary polynomial

$$
f=A_{0}+A_{1} x+\cdots+A_{t} x^{t} \in D(R)[x] \text { such that } f^{n}=0
$$

and we have to show that

$$
\begin{equation*}
A_{s_{1}} A_{s_{2}} \cdots A_{s_{n}}=0 \text { for any } n \text {-tuple }\left(s_{1}, s_{2}, \ldots, s_{n}\right) \tag{10}
\end{equation*}
$$

Since $N(R)$ is an ideal of $D(R)$ and the ring $D(R) / N(R)$ is isomorphic to R, it follows that $D(R) / N(R)$ is reduced. Hence also the ring

$$
D(R)[x] / N(R)[x] \cong(D(R) / N(R))[x]
$$

is reduced and from $f^{n}=0$ we deduce that $f \in N(R)[x]$. Thus $A_{0}, A_{1}, \ldots, A_{t} \in$ $N(R)$, and (9) implies that to prove (10) it suffices to show that for any $m \in$ $\{1,2, \ldots, n\}$ and n-tuple $\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ we have

$$
\begin{equation*}
\gamma_{m}\left(A_{s_{1}}, A_{s_{2}}, \ldots, A_{s_{n}}\right)=0 \tag{11}
\end{equation*}
$$

To prove (11), let $\Phi: D(R)[x] \rightarrow D(R[x])$ be the canonical isomorphism and let $F=\Phi(f)$. Since $f \in N(R)[x]$ and $f^{n}=0$, we have $F \in N(R[x])$ and $F^{n}=0$. Hence (9) implies

$$
\begin{equation*}
\sum_{m=1}^{n} \gamma_{m}(\underbrace{F, F, \ldots, F}_{n \text { times }})=0 . \tag{12}
\end{equation*}
$$

Recall that γ_{m} denotes the sequence (8) and thus

$$
\begin{align*}
& \gamma_{m}(F, F, \ldots, F) \\
= & F^{(1,3)} F^{(3,5)} \cdots F^{(2 m-3,2 m-1)} F^{(2 m-1,2 m)} F^{(2 m, 2 m+2)} \cdots F^{(2 n-2,2 n)} . \tag{13}
\end{align*}
$$

Note that since $F \in D(R[x])=D_{n}\left(D_{2}(R[x])\right)$, for any odd $i \in\{1,2, \ldots, 2 n\}$ we have $F^{(i, i+1)}=F^{(1,2)}$ and if furthermore $i \leq 2 n-3$, then $F^{(i, i+2)}=F^{(i+1, i+3)}$. Moreover, since R is commutative, the ring $R[x]$ is commutative. Combining all of these with (13), we obtain

$$
\begin{aligned}
\gamma_{m}(F, F, \ldots, F) & =F^{(2,4)} F^{(4,6)} \cdots F^{(2 m-2,2 m)} F^{(1,2)} F^{(2 m, 2 m+2)} \cdots F^{(2 n-2,2 n)} \\
& =F^{(1,2)} F^{(2,4)} F^{(4,6)} \cdots F^{(2 m-2,2 m)} F^{(2 m, 2 m+2)} \cdots F^{(2 n-2,2 n)} \\
& =\gamma_{1}(F, F, \ldots, F) .
\end{aligned}
$$

We have shown that

$$
\begin{equation*}
\gamma_{m}(F, F, \ldots, F)=\gamma_{1}(F, F, \ldots, F) \text { for any } m \in\{1,2, \ldots, n\} \tag{14}
\end{equation*}
$$

and thus (12) implies

$$
\begin{equation*}
n \cdot \gamma_{1}(F, F, \ldots, F)=0 . \tag{15}
\end{equation*}
$$

Since by (iii) we have $n r=0 \Rightarrow r=0$ for any $r \in R$, it follows from (15) that $\gamma_{1}(F, F, \ldots, F)=0$, and thus, by (14), for any $m \in\{1,2, \ldots, n\}$ we have

$$
\begin{equation*}
\gamma_{m}(F, F, \ldots, F)=0 \tag{16}
\end{equation*}
$$

We will show that (16) implies (11), which is enough to complete the proof. Let $\gamma_{m}=\left(k_{0}, k_{1}, k_{2}, \ldots, k_{n-1}, k_{n}\right)$ (at this point, the exact form of γ_{m} does not matter). From (16) we obtain

$$
\begin{equation*}
F^{\left(k_{0} k_{1}\right)} F^{\left(k_{1} k_{2}\right)} \ldots F^{\left(k_{n-1} k_{n}\right)}=0 . \tag{17}
\end{equation*}
$$

For any $i \in\{1,2, \ldots, n\}$, set

$$
f_{i}=A_{0}^{\left(k_{i-1} k_{i}\right)}+A_{1}^{\left(k_{i-1} k_{i}\right)} x+\cdots+A_{t}^{\left(k_{i-1} k_{i}\right)} x^{t} \in R[x] .
$$

Since $F=\Phi(f)$, it follows from (17) that

$$
\begin{equation*}
f_{1} f_{2} \cdots f_{n}=0 . \tag{18}
\end{equation*}
$$

By assumption the ring R is reduced, so R is Armendariz as well, and thus (18) and Proposition 1.1 imply that for any n-tuple ($s_{1}, s_{2}, \ldots, s_{n}$) we have

$$
A_{s_{1}}^{\left(k_{0} k_{1}\right)} A_{s_{2}}^{\left(k_{1} k_{2}\right)} \cdots A_{s_{n}}^{\left(k_{n-1} k_{n}\right)}=0
$$

that is,

$$
\gamma_{m}\left(A_{s_{1}}, A_{s_{2}}, \ldots, A_{s_{n}}\right)=0 \text { for any } m \in\{1,2, \ldots, n\}
$$

Since $A_{s_{1}}, A_{s_{2}}, \ldots, A_{s_{n}} \in N(R)$, from (9) we obtain

$$
A_{s_{1}} A_{s_{2}} \cdots A_{s_{n}}=0
$$

which is just condition (10). The proof is complete.
Now we are in a position to answer Jeon-Lee-Ryu's problem (5).
Example 3.2. (There exists a nonreduced ring R such that for any $n \geq 2$ the ring $D_{n}(R)$ is n-semi-Armendariz.) Let, as usually, \mathbb{Z} denote the ring of integers. The ring $R=D_{2}(\mathbb{Z})$ is not reduced but, by Theorem 3.1, for any $n \geq 2$ the ring $D_{n}(R)$ is n-semi-Armendariz.
Remark 3.3. Using the same arguments as in the proof of Theorem 3.1 one can prove the following generalization of Theorem 3.1.
Let S be a reduced subring of a commutative Armendariz ring R and let $n \geq 2$ be an integer. Then the following conditions are equivalent:
(i) The ring $D_{n}\left(D_{2}(S, R)\right)$ is n-semi-Armendariz;
(ii) The ring $\left(D_{2}(S, R)[x]\right) /\left(x^{n}\right)$ is n-semi-Armendariz, where $\left(x^{n}\right)$ denotes the ideal of $D_{2}(S, R)[x]$ generated by x^{n};
(iii) $n r=0 \Rightarrow r=0$ for any $r \in R$.

Let R be a ring and let I be a proper ideal of R. Assume R / I and I are n -semi-Armendariz, where I is considered as an n-semi-Amendariz ring without unity. One could conjecture that in this case R has to be n-semi-Armendariz. However, this is not the case as shown in [7, Example 2.2]. Below we use Theorem 3.1 to construct another example of a ring R with an ideal I such that R / I and I are n-semi-Armendariz but R is not n-semi-Armendariz.
Example 3.4. (For any $n \geq 2$ there exist a ring R and an ideal I of R such that I and R / I are n-semi-Armendariz, but R is not n-semi-Armendariz.) Let $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$ be the prime factorization of n and let $m=p_{1} p_{2} \cdots p_{k}$. Note that the ring \mathbb{Z}_{m} of integers modulo m is reduced. Set $R=\left(D_{2}\left(\mathbb{Z}_{m}\right)[x]\right) /\left(x^{n}\right)$ and $I=\left(x^{n-1}\right) /\left(x^{n}\right)$. Then I is an ideal of R with $I^{2}=0$ and thus I is n-semiArmendariz. Furthermore, the ring $R / I \cong\left(D_{2}\left(\mathbb{Z}_{m}\right)[x]\right) /\left(x^{n-1}\right)$ is isomorphic to a subring of $U_{n-1}\left(D_{2}\left(\mathbb{Z}_{m}\right)\right.$) (see the proof of the implication (i) \Rightarrow (ii) in Theorem 3.1). Since $N=N_{2}\left(\mathbb{Z}_{m}\right)$ is an ideal of $D_{2}\left(\mathbb{Z}_{m}\right)$ such that the ring $D_{2}\left(\mathbb{Z}_{m}\right) / N \cong \mathbb{Z}_{m}$ is reduced and $N^{2}=0$, Proposition 2.4 implies that the ring $U_{n-1}\left(D_{2}\left(\mathbb{Z}_{m}\right)\right)$ is n-semi-Armendariz, and thus the ring R / I is n -semi-Armendariz as well. Finally note that by Theorem 3.1 the ring R is not n-semi-Armendariz.

Recall that a ring R is said to be abelian if every idempotent of R is central. In [7, Example 2.4(1)] it was shown that an abelian prime ring need not be semi-Armendariz. Bellow we show the same, constructing a simpler example than this in [7].

Example 3.5. (An abelian prime ring need not be semi-Armendariz.) Let S be a domain and let $n \geq 2$. Set $R=D_{n+2}(S)$. Then by [5, Lemma 2] the ring R is abelian. To see that R is prime, consider any non-zero matrices $A, B \in R$. Let $a_{i j}$ and $b_{k l}$ be any nonzero entries of A and B, respectively. Then the (i, l) entry of $A E_{j k} B$ is equal to $a_{i j} b_{k l} \neq 0$. Thus $A R B \neq 0$, proving that R is prime. Finally, Lemma 2.9 implies that R is not n-semi-Armendariz and thus R is not semi-Armendariz.

We close the paper with an example of a commutative ring which is not semi-Armendariz (cf. [7, Example 2.4(2)]).

Example 3.6. (A commutative ring need not be semi-Armendariz.) Obviously, the ring $R=D_{2}\left(D_{2}\left(\mathbb{Z}_{2}\right)\right)$ is commutative. However, R is not 2-semiArmendariz by Theorem 3.1 and thus R is not semi-Armendariz.

Acknowledgments. The research of Ryszard Mazurek was supported by the Polish National Center of Science Grant No DEC-2011/03/B/ST1/04893, carried out at the University of Warsaw.

References

[1] D. D. Anderson and V. Camillo, Armendariz rings and Gaussian rings, Comm. Algebra 26 (1998), no. 7, 2265-2272.
[2] E. P. Armendariz, A note on extensions of Baer and P.P.-rings, J. Austral. Math. Soc. 18 (1974), 470-473.
[3] B. J. Gardner and R. Wiegandt, Radical theory of rings, Monographs and Textbooks in Pure and Applied Mathematics, vol. 261, Marcel Dekker, Inc., New York, 2004.
[4] Y. Hirano, On annihilator ideals of a polynomial ring over a noncommutative ring, J. Pure Appl. Algebra 168 (2002), no. 1, 45-52.
[5] C. Huh, H. K. Kim, and Y. Lee, p.p. rings and generalized p.p. rings, J. Pure Appl. Algebra 167 (2002), no. 1, 37-52.
[6] C. Huh, Y. Lee, and A. Smoktunowicz, Armendariz rings and semicommutative rings, Comm. Algebra 30 (2002), no. 2, 751-761.
[7] Y. C. Jeon, Y. Lee, and S. J. Ryu, A structure on coefficients of nilpotent polynomials, J. Korean Math. Soc. 47 (2010), no. 4, 719-733.
[8] N. K. Kim and Y. Lee, Armendariz rings and reduced rings, J. Algebra 223 (2000), no. 2, 477-488.
[9] N. K. Kim, K. H. Lee, and Y. Lee, Power series rings satisfying a zero divisor property, Comm. Algebra 34 (2006), no. 6, 2205-2218.
[10] T. Y. Lam, A first Course in Noncommutative Rings, Graduate Texts in Math., vol. 131, Springer-Verlag, Berlin-Heidelberg-New York 1991.
[11] T.-K. Lee and T.-L. Wong, On Armendariz rings, Houston J. Math. 29 (2003), no. 3, 583-593.
[12] Z. Liu and R. Zhao, On weak Armendariz rings, Comm. Algebra 34 (2006), no. 7, 2607-2616.
[13] G. Marks, R. Mazurek, and M. Ziembowski, A unified approach to various generalizations of Armendariz rings, Bull. Aust. Math. Soc. 81 (2010), no. 3, 361-397.
[14] R. Mazurek and M. Ziembowski, Right Gaussian rings and skew power series rings, J. Algebra 330 (2011), no. 1, 130-146.
[15] _, On a characterization of distributive rings via saturations and its applications to Armendariz and Gaussian rings, Rev. Mat. Iberoam. 30 (2014), no. 3, 1073-1088.

Kamil KozŁowski

Faculty of Computer Science
Bialystok University of Technology
Wiejska 45A, 15-351 Bia£ystok, Poland
E-mail address: kam.kozlowski93@gmail.com
Ryszard Mazurek
Faculty of Computer Science
Bialystok University of Technology
Wiejska 45A, 15-351 BiaŁystok, Poland
E-mail address: r.mazurek@pb.edu.pl

[^0]: Received September 12, 2014.
 2010 Mathematics Subject Classification. 16N40, 16S36, 16S50.
 Key words and phrases. n-semi-Armendariz ring, semi-Armendariz ring, upper triangular matrix ring.

