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ON SEMI-ARMENDARIZ MATRIX RINGS

Kamil Koz lowski and Ryszard Mazurek

Abstract. Given a positive integer n, a ring R is said to be n-semi-
Armendariz if whenever fn = 0 for a polynomial f in one indeterminate
over R, then the product (possibly with repetitions) of any n coefficients
of f is equal to zero. A ring R is said to be semi-Armendariz if R is
n-semi-Armendariz for every positive integer n. Semi-Armendariz rings
are a generalization of Armendariz rings. We characterize when certain
important matrix rings are n-semi-Armendariz, generalizing some results
of Jeon, Lee and Ryu from their paper (J. Korean Math. Soc. 47 (2010),
719–733), and we answer a problem left open in that paper.

1. Introduction

Throughout this paper, all rings are associative, and all rings have an identity
except where explicitly indicated. For a ring R, the ring of polynomials in the
indeterminate x over R is denoted by R[x], and if A ⊆ R, then A[x] stands for
the set of polynomials in R[x] whose all coefficients belong to A.

Recall that a ring R is said to be an Armendariz ring if whenever the product
of two polynomials over R is zero, then the products of their coefficients are all
zero, that is, in the polynomial ring R[x] the following holds:

(1)
for any f =

k∑

i=0

aix
i, g =

m∑

j=0

bjx
j ∈ R[x],

if fg = 0, then aibj = 0 for all i, j.

The name for such rings was chosen to honor E. P. Armendariz, who noted
in [2] that all reduced rings (i.e., rings containing no nonzero nilpotent ele-
ments) satisfy condition (1). Various interesting properties and constructions
of Armendariz rings can be found, e.g., in [1], [4], [6], [8], [11], [13], [14] and
[15].

Armendariz rings, as well as many other classes of Armendariz-like rings,
have recently been objects of intensive investigation (see [13]). These new
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classes of Armendariz-like rings were defined using generalizations or modifi-
cations of condition (1). For example, by replacing in (1) the polynomial ring
R[x] with the power series ring R[[x]], one obtains the definition of a power-
serieswise Armendariz ring, introduced by N. K. Kim, K. H. Lee, and Y. Lee in
[9]. By replacing in (1) the requirement that the products aibj are all zero with
the condition that the products aibj are all nilpotent, we obtain the definition
of a weak Armendariz ring, introduced by Z. Liu and R. Zhao in [12]. By con-
sidering in (1) the square of a single polynomial instead of the product of two
polynomials, we obtain the definition of a 2-semi-Armendariz ring, introduced
by Y. C. Jeon, Y. Lee and S. J. Ryu in [7], according to which a ring R is said
to be 2-semi-Armendariz provided for any polynomial f =

∑m

i=0 aix
i ∈ R[x],

if f2 = 0, then aiaj = 0 for all i, j.
More generally, for a positive integer n, in [7] Jeon, Lee and Ryu define a

ring R to be n-semi-Armendariz if for any polynomial f =
∑m

i=0 aix
i ∈ R[x],

fn = 0 implies ai1ai2 · · · ain = 0 for any subset {i1, i2, . . . , in} ⊆ {0, 1, . . . ,m},

and they call a ring R a semi-Armendariz ring if R is n-semi-Armendariz for
every positive integer n. The following well-known result of D. D. Anderson
and V. Camillo shows that all Armendariz rings are semi-Armendariz.

Proposition 1.1 ([1, Proposition 1]). Suppose R is an Armendariz ring. If

f1, f2, . . . , fn ∈ R[x] are such that f1f2 · · · fn = 0, then a1a2 · · · an = 0, where
ai is a coefficient of fi.

The following proposition summarizes basic properties of n-semi-Armendariz
rings and semi-Armendariz rings.

Proposition 1.2 (see [7]).

(a) Every subring of an n-semi-Armendariz ring is n-semi-Armendariz.

(b) Direct sum of n-semi-Armendariz rings is n-semi-Armendariz.

(c) A ring R is n-semi-Armendariz if and only if the ring R[x] is n-semi-

Armendariz.

(d) If a ring R is semi-Armendariz, then nil(R[x]) ⊆ nil(R)[x], where

nil(A) denotes the set of nilpotent elements of a ring A.

The aim of this paper is to characterize when some important matrix rings
are n-semi-Armendariz. The motivation for this work were results of Jeon, Lee
and Ryu from their paper [7] and a problem left open in [7].

In [7, Theorem 1.2] it was proved that for any n ≥ 2 the n × n upper
triangular matrix ring Un(R) over a ring R is n-semi-Armendariz if and only if
R is reduced. In Section 2 we extend this and some other results of [7] to the
ring of upper triangular n × n matrices over a ring R whose diagonal entries
belong to a given subring S of R (see Proposition 2.4 and Theorem 2.5).

For a ring R and an integer n ≥ 2, the ring Dn(R) of upper triangular n×n
matrices over R whose diagonal entries are equal is a subring of Un(R). Hence it
follows from the aforementioned result [7, Theorem 1.2] and Proposition 1.2(a)
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that if R is a reduced ring, then the ring Dn(R) is n-semi-Armendariz. It is
natural to ask, whether the implication can be reversed, that is whether a ring
R has to be reduced if the ring Dn(R) is n-semi-Armendariz. In [7] the problem
was left unsolved. In Section 3 we show that for any integer n ≥ 2 the answer
to the problem is negative (see Example 3.2). The answer follows easily from a
general result (Theorem 3.1), which also allows to construct further examples
important for the theory of n-semi-Armendariz rings (see Examples 3.4 and
3.6).

In this paper, the full ring of n × n matrices over a ring R is denoted by
Mn(R), and the ring of upper triangular n × n matrices over R is denoted by
Un(R). For a matrix A ∈ Mn(R) and any i, j ∈ {1, 2, . . . , n} the (i, j) entry of A
is denoted by A(ij). The symbol Eij stands for the matrix with (i, j) entry equal
to 1 and all other entries equal to 0 (dimensions of the matrix Eij will be clear
from the context). The canonical ring isomorphism ofMn(R)[x] ontoMn(R[x])
is denoted by Φ. Recall that the isomorphism Φ : Mn(R)[x] → Mn(R[x]) maps
a polynomial

f = A0 +A1x+A2x
2 + · · ·+Akx

k ∈ Mn(R)[x]

to the n× n matrix Φ(f) over R[x] whose (i, j) entry is the polynomial

A
(ij)
0 +A

(ij)
1 x+A

(ij)
2 x2 + · · ·+A

(ij)
k xk ∈ R[x]

for all i, j ∈ {1, 2, . . . , n}.We will usually consider the isomorphism Φ restricted
to a concrete subring of the ring Mn(R); such a restriction will still be denoted
by Φ.

2. n-semi-Armendariz matrix rings

The aim of this section is to identify n-semi-Armendariz subrings of the full
matrix ring Mm(R), where R is a ring and m ≥ 2. We start by showing that
the ring Mm(R) is never n-semi-Armendariz for n ≥ 2.

Proposition 2.1. Let R be a ring and let m,n ≥ 2 be integers. Then the ring

Mm(R) is not n-semi-Armendariz.

Proof. Let f = A0 +A1x+A2x
2 ∈ Mm(R)[x], where

A0 = E1m, A1 = E11 − Emm, A2 = −Em1.

Then f2 = 0 and thus fn = 0. Since An
1 = E11 + (−1)nEmm 6= 0, the ring

Mm(R) is not n-semi-Armendariz. �

It is well known that for every n ≥ 2 and arbitrary ring R, the upper
triangular matrix ring Un(R) is not Armendariz (see [8, Example 1]). However,
for any reduced ring R the ring Un(R) is n-semi-Armendariz, which was proved
in [7, Theorem 1.2] (and which shows that the class of n-semi-Armendariz rings
is indeed wider than the class of Armendariz rings). In Theorem 2.5 below, we
generalize this result by showing that for any reduced subring S of an arbitrary

ring R, the upper triangular n × n matrices over R whose diagonal entries
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belong to S form an n-semi-Armendariz ring. The following observation will
be useful in our proofs.

Lemma 2.2. Let R be a ring, let I be an ideal of R such that the factor ring

R/I is reduced, and let m be a positive integer such that Im = 0. Then R is

n-semi-Armendariz for every n ≥ m.

Proof. Clearly, the set I[x] of polynomials from R[x] with all coefficients in I
is an ideal of R[x]. Since the ring R/I is reduced, so is the ring R[x]/I[x] ∼=
(R/I)[x]. Therefore, if a polynomial f = a0 + a1x+ · · ·+ akx

k ∈ R[x] satisfies
fn = 0, then f ∈ I[x] and thus ai ∈ I for any i. Hence, if n ≥ m, then for any
i1, i2, . . . , in ∈ {0, 1, . . . , k} we have ai1ai2 · · · ain ∈ In ⊆ Im = 0, which proves
that the ring R is n-semi-Armendariz. �

An immediate consequence of Lemma 2.2 is [7, Proposition 2.6]. Example 3.4
shows that the condition that R/I is reduced in Lemma 2.2 is not superfluous.

Remark 2.3. Let R be a ring. Recall that an ideal J of R is said to be completely

prime if the factor ring R/J is a domain. The intersection of all completely
prime ideals of R is called the generalized nil radical of R and denoted by Ng(R)
(see [3, Example 3.8.16]). Note that if I is an ideal of R such that the ring R/I
is reduced and Im = 0 for some positive integer m, then I = Ng(R). Indeed,
since Im = 0, we deduce that I is contained in every completely prime ideal of
R and I ⊆ Ng(R) follows. The opposite inclusion is an immediate consequence
of the fact that any reduced ring is a subdirect product of domains (see [10,
Theorem 12.7]). Thus I = Ng(R), as desired. Therefore, Lemma 2.2 can
alternatively be formulated as follows: If R is a ring such that Ng(R)m = 0
for some positive integer m, then R is n-semi-Armendariz for every n ≥ m.

Let S be a subring of a ring R. For any positive integer n we set

Un(S,R) = {A ∈ Un(R) | A(ii) ∈ S for every i ∈ {1, 2, . . . , n}},

i.e., Un(S,R) consists of all upper triangular n × n matrices over R whose
diagonal entries belong to S. Clearly, Un(S,R) is a subring of Un(R). Moreover,
we set

Nn(R) = {A ∈ Un(R) | A(ii) = 0 for every i ∈ {1, 2, . . . , n}},

i.e., Nn(R) is the set of upper triangular n×n matrices over R with all diagonal
entries equal to zero. Obviously, Nn(R) is an ideal of both Un(R) and Un(S,R).

The following result will be helpful in proving that some matrix rings of the
form Un(S,R) are k-semi-Armendariz.

Proposition 2.4. Let S be a subring of a ring R and let n be a positive

integer. If there exists an ideal I of R such that I ⊆ S, and the ring S/I is

reduced, and Im = 0 for some positive integer m, then the ring Un(S,R) is

k-semi-Armendariz for every k ≥ n+m− 1.
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Proof. Since I is an ideal of R, the set

J = {A ∈ Un(S,R) | A(ii) ∈ I for every i ∈ {1, 2, . . . , n}}

is an ideal of Un(S,R). Furthermore, the factor ring Un(S,R)/J is isomorphic
to the direct sum of n copies of the reduced ring S/I and thus also Un(S,R)/J
is reduced. Hence by Lemma 2.2, to complete the proof it suffices to show that
Jn+m−1 = 0. For this, it is enough to show that

for any A1, A2, . . . , An+m−1 ∈ J we have A1A2 · · ·An+m−1 = 0.

Note that for any i, j ∈ {1, 2, . . . , n} the (i, j) entry of the matrix
A1A2 · · ·An+m−1 is a sum of products of the form

(2) A
(k1k2)
1 A

(k2k3)
2 A

(k3k4)
3 · · ·A

(kn+m−1kn+m)
n+m−1 , where k1 = i and kn+m = j.

If kl > kl+1 for some l ∈ {1, 2, . . . , n+m− 1}, then A
(klkl+1)
l = 0 and thus the

product (2) is equal to 0 in this case. Otherwise we have

1 ≤ i = k1 ≤ k2 ≤ k3 ≤ · · · ≤ kn+m−1 ≤ kn+m = j ≤ n.

Hence in this case there must exist at least m pairs (kl, kl+1) with kl = kl+1,

and since Al ∈ J, for any such a pair (kl, kl+1) we have A
(klkl+1)
l ∈ I. Conse-

quently, the product (2) belongs to Im and thus it is equal to zero. Therefore,
A1A2 · · ·An+m−1 = 0. �

The following result extends [7, Theorem 1.2] to matrix rings of the form
Un(S,R), with a different proof than that given in [7].

Theorem 2.5. Let S be a subring of a ring R and let n ≥ 2 be an integer.

Then

(a) The following conditions are equivalent:
(i) Un(S,R) is n-semi-Armendariz;
(ii) Un(S,R) is k-semi-Armendariz for every integer k ≥ n;
(iii) S is reduced.

(b) Un+1(S,R) is n-semi-Armendariz if and only if S is reduced and R is

Armendariz.

Proof. (a) (i) ⇒ (iii): Assume Un(S,R) is n-semi-Armendariz. Then by Propo-
sition 1.2(a), the ring Un(S) is n-semi-Armendariz. Hence by [7, Theorem 1.2],
the ring S is reduced.

(iii) ⇒ (ii): Apply Proposition 2.4 with I = 0 and m = 1.
(ii) ⇒ (i): Obvious.
(b) We will use the following observation:
For any ring T and matrices B1, B2, . . . , Bn ∈ Nn+1(T ) we have

(3) B1B2 · · ·Bn = B
(1,2)
1 B

(2,3)
2 · · ·B(n,n+1)

n E1,n+1.
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To establish (3), note that for any i, j ∈ {1, 2, . . . , n+ 1} the (i, j) entry of
B1B2 · · ·Bn is a sum of products of the form

(4) B
(k1k2)
1 B

(k2k3)
2 B

(k3k4)
3 · · ·B(knkn+1)

n , where k1 = i and kn+1 = j.

For any l ∈ {1, 2, . . . , n} we have Bl ∈ Nn+1(T ) and thus if kl ≥ kl+1, then

B
(klkl+1)
l = 0. Hence the product (4) can be nonzero only in the case when

1 ≤ i = k1 < k2 < k3 < · · · < kn < kn+1 = j ≤ n+ 1,

that is, when kl = l for every l ∈ {1, 2, . . . , n+ 1}. Now (3) follows.
To prove (b), set V = Un+1(S,R) and N = Nn+1(R). Assume V is n-semi-

Armendariz. Since Un(S,R) is isomorphic to a subring of V, the ring Un(S,R)
is n-semi-Armendariz by Proposition 1.2(a), and thus by the already proved
part (a), the ring S is reduced. To show that R is Armendariz, consider any
polynomials f = a0 + a1x + · · · + akx

k, g = b0 + b1x + · · · + blx
l ∈ R[x] such

that fg = 0. Without loss of generality we can assume that k = l. For any
m ∈ {0, 1, . . . , k} we set

Am = amE12 + bmE23 + E34 + · · ·+ En,n+1 ∈ N,

and we put

h = A0 +A1x+ · · ·+Akx
k ∈ N [x].

Let Φ : Un+1(R)[x] → Un+1(R[x]) be the canonical isomorphism, and let H =
Φ(h). Since h ∈ N [x], it follows that H ∈ Nn+1(R[x]). Hence (3) implies

Hn = H(1,2)H(2,3)H(3,4) · · ·H(n,n+1)E1,n+1 =fg(1+x+· · ·+xk)n−2E1,n+1 = 0,

and thus hn = 0. Since V is n-semi-Armendariz and hn = 0, it follows that
AiAjA

n−2
1 = 0 for any i, j. Since Ai, Aj , A1 ∈ N , (3) implies

aibj = A
(1,2)
i A

(2,3)
j A

(3,4)
1 · · ·A

(n,n+1)
1 = 0,

which proves that R is Armendariz.
To prove the converse, assume S is reduced and R is Armendariz, and con-

sider any polynomial q = A0 +A1x+ · · ·+Akx
k ∈ V [x] with qn = 0. We claim

that Ai ∈ N for each i. To see this, note that since S is reduced and N is an
ideal of V such that V/N is isomorphic to the direct sum of n+ 1 copies of S,
the ring V/N is reduced, and thus so is the ring V [x]/N [x] ∼= (V/N)[x]. Hence
qn = 0 yields q ∈ N [x], which proves our claim.

Let Φ : Un+1(R)[x] → Un+1(R[x]) be the canonical isomorphism, and let
Q = Φ(q). Since q ∈ N [x], it follows that Q ∈ Nn+1(R[x]). Furthermore,
Qn = Φ(qn) = Φ(0) = 0, and thus (3) implies

Q(1,2)Q(2,3) · · ·Q(n,n+1) = 0.

Hence, if for any i ∈ {1, 2, . . . , n} we set

fi = A
(i,i+1)
0 +A

(i,i+1)
1 x+ · · ·+A

(i,i+1)
k xk ∈ R[x],
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then f1f2 · · · fn = 0. Since R is Armendariz, by Proposition 1.1 we have

A(1,2)
s1

A(2,3)
s2

· · ·A(n,n+1)
sn

= 0 for any n-tuple (s1, s2, . . . , sn),

and (3) implies As1As2 · · ·Asn = 0. Thus V is n-semi-Armendariz. �

As an immediate consequence of the above theorem we obtain [7, Theorem
1.2], which is just the first part of the following corollary. The second part
says that if R is a reduced ring, then Un(R) is a maximal n-semi-Armendariz
subring of the full matrix ring Mn(R).

Corollary 2.6. For any ring R and integer n ≥ 2, the following conditions

are equivalent:

(i) Un(R) is n-semi-Armendariz;
(ii) Un(R) is k-semi-Armendariz for every k ≥ n;
(iii) Un+1(R) is n-semi-Armendariz;
(iv) R is reduced.

If any of these equivalent conditions holds, then Un(R) is a maximal n-semi-

Armendariz subring of Mn(R).

Proof. Since reduced rings are Armendariz, Theorem 2.5 implies that (i), (ii),
(iii), and (iv) are equivalent. To prove the second part of the corollary, as-
sume R is reduced and T is an n-semi-Armendariz subring of Mn(R) such that
Un(R)  T. Then there exists a matrix A ∈ T such that for some i > j the (i, j)
entry of A, say a, is non-zero. Since Eii, Ejj ∈ T , also EiiAEjj = aEij ∈ T .
Thus for the matrices A0 = aEij , A1 = aEii − aEjj and A2 = −aEji we have
f = A0 + A1x + A2x

2 ∈ T [x]. It is easy to see that f2 = 0, and thus fn = 0.
Since T is n-semi-Armendariz, 0 = An

1 = anEii − anEjj . Hence an = 0, and
since R is reduced, we obtain a = 0, a contradiction. �

The following result is an immediate consequence of Corollary 2.6.

Corollary 2.7 (cf. [7, Corollary 1.3]). For any ring R the following conditions

are equivalent:

(i) R is reduced;
(ii) U2(R) is semi-Armendariz;
(iii) U3(R) is semi-Armendariz.

Given integers n ≥ 2 and m ≥ n + 2, in the context of the first part of
Corollary 2.6 it is natural to ask, when for a ring R the ring Um(R) is n-semi-
Armendariz. The following result shows that the answer is “never” (cf. [7,
Example 1.6]).

Proposition 2.8. Let R be a ring and let n ≥ 2 be an integer. Then for any

integer m ≥ n+ 2 the ring Um(R) is not n-semi-Armendariz.

The proof of Proposition 2.8 will be based on the following lemma. In the
statement of the lemma, in an obvious way, we extend the notion of an n-semi-
Armendariz ring to rings without unity. Recall that Nn+2(R) consists of upper



788 KAMIL KOZ LOWSKI AND RYSZARD MAZUREK

triangular (n+ 2)× (n+ 2) matrices over R with all diagonal entries equal to
zero. Clearly, Nn+2(R) is a non-unital subring of Un+2(R) (even more: it is an
ideal of Un+2(R)).

Lemma 2.9. For any ring R and integer n ≥ 2 the non-unital ring Nn+2(R)
is not n-semi-Armendariz.

Proof. We start the proof with the case n = 2. Set A = E12 + E34 and
B = E12 + E13 − E24 + E34. Then f = A + Bx ∈ N4(R)[x] and f2 = 0, but
AB = −E14 6= 0 and thus N4(R) is not 2-semi-Armendariz.

Next assume that n ≥ 3. In this case we simply repeat arguments of [7,
Example 1.6]. We set

A = E12 + E23 + · · ·+ En−2,n−1 + En−1,n+1 + En,n+2 ∈ Nn+2(R),

B = En−1,n + En−1,n+1 + En,n+2 − En+1,n+2 ∈ Nn+2(R).

It is easy to verify that B2 = BA2 = BAB = 0,

Ak = E1,k+1 + E2,k+2 + · · ·+ En−k−1,n−1 + En−k,n+1 for 2 ≤ k ≤ n− 2,

and An−1 = E1,n+1. Hence for f = A+Bx ∈ Nn+2(R)[x] we have

fn = An + (An−2BA+ An−1B)x = (E1,n+2 − E1,n+2)x = 0.

Since An−2BA = E1,n+2 6= 0, the ring Nn+2(R) is not n-semi-Armendariz. �

Now we are ready to prove Proposition 2.8.

Proof of Proposition 2.8. From Proposition 1.2(a) and Lemma 2.9 we deduce
that the ring Un+2(R) is not n-semi-Armendariz. To complete the proof, con-
sider any integer m ≥ n+2. Then the ring Un+2(R) is isomorphic to a subring
of Um(R). Since the ring Un+2(R) is not n-semi-Armendariz, Proposition 1.2(a)
implies that Um(R) is not n-semi-Armendariz. �

Let R be a ring and let n, k be integers such that 2 ≤ n < k. By Corollary
2.6, R being reduced implies that the ring Un(R) is k-semi-Armendariz. The
following example shows that the opposite implication is not true.

Example 2.10. (For any 2 ≤ n < k there exists a nonreduced ring R such

that the ring Un(R) is k-semi-Armendariz.) Let p be a prime number, and let
m = k−n+1. Let R = Zpm be the ring of integers modulo pm and let I = (p)
be the ideal of R generated by p. Then the factor ring R/I ∼= Zp is reduced
and Im = 0. Hence by Proposition 2.4 the ring Un(R) is k-semi-Armendariz.
Furthermore, since m ≥ 2, the ring R is not reduced.

Corollary 2.6 implies that the ring Un(R) constructed in Example 2.10 is
not n-semi-Armendariz. Hence, the same example shows also that for any

2 ≤ n < k there exists a k-semi-Armendariz ring that is not n-semi-Armendariz

(cf. [7, p. 725]).
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3. Answer to Jeon-Lee-Ryu’s problem

Given an integer n ≥ 2, in [7, Theorem 1.2] Jeon, Lee and Ryu characterized
rings R for which the ring Un(R) is n-semi-Armendariz. Namely, they proved
that Un(R) is n-semi-Armendariz if and only if R is reduced (see also Corollary
2.6). Since the set

Dn(R) = {A ∈ Un(R) | A(1,1) = A(2,2) = · · · = A(n,n)}

(i.e., the set of all upper triangular n×nmatrices over R whose diagonal entries
are equal) is a subring of Un(R), it follows from Proposition 1.2(a) that if R is

a reduced ring, then the ring Dn(R) is n-semi-Armendariz. It is natural to ask,
whether the implication can be reversed, which led the authors of [7] to the
following problem (see [7, p. 724, the paragraph preceding Proposition 1.5]):

(5) Problem: If n ≥ 2 and the ring Dn(R) is n-semi-Armendariz, must R be
a reduced ring?

In [7] the problem was left unsolved. In Example 3.2 we will show that the
answer to the problem is negative for any integer n ≥ 2. The answer will easily
follow from the general Theorem 3.1.

The main reason why in Theorem 3.1 we focus on rings Dn(S) with S of
the form S = D2(R) is that the ring S = D2(R) is never reduced, so in
the context of Jeon-Lee-Ryu’s problem (5) it is natural to ask, when the ring
Dn(S) = Dn(D2(R)) is n-semi-Armendariz. In the theorem below we answer
this question in the case where the ring R is reduced and commutative.

For a ring R, if n is a positive integer and r ∈ R, then nr denotes the sum
r + r + · · ·+ r with n summands.

Theorem 3.1. Let R be a reduced commutative ring and let n be a positive

integer. Then the following conditions are equivalent:

(i) The ring Dn(D2(R)) is n-semi-Armendariz;
(ii) The ring (D2(R)[x])/(xn) is n-semi-Armendariz, where (xn) denotes

the ideal of D2(R)[x] generated by xn;
(iii) nr = 0 ⇒ r = 0 for any r ∈ R.

Proof. The case n = 1 is trivial, because every ring is obviously 1-semi-Armen-
dariz. Thus to the end of the proof we assume that n ≥ 2.

(i) ⇒ (ii): Assume the ring Dn(D2(R)) is n-semi-Armendariz. The factor
ring (D2(R)[x])/(xn) is isomorphic to the matrix ring


















A1 A2 · · · An−1 An

0 A1
. . . An−1

...
. . .

. . .
. . .

...

0 0
. . . A1 A2

0 0 · · · 0 A1












| A1, A2, . . . , An ∈ D2(R)







,
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which is a subring of Dn(D2(R)). Hence Proposition 1.2(a) implies that the
ring (D2(R)[x])/(xn) is n-semi-Armendariz.

(ii) ⇒ (iii): Put P = (D2(R)[x])/(xn) and assume P is n-semi-Armendariz.
We will use the bar notation for elements of P, that is, for any h ∈ D2(R)[x] we
will write h̄ to denote the coset h+ (xn) ∈ P. Let r ∈ R be such that nr = 0.
Set

A =

(
r 0
0 r

)

, B =

(
0 1
0 0

)

∈ D2(R)

and consider the polynomial f = Āx̄+ B̄t ∈ P [t]. Note that in P we have

ĀB̄ = B̄Ā, B̄2 = 0, x̄n = 0, and nĀ = 0.

Hence, by the binomial theorem,

fn = (Āx̄+ B̄t)n =
n∑

i=0

( n
i ) (Āx̄)n−i(B̄t)i = Ānx̄n + nĀn−1x̄ n−1B̄t = 0.

Since the ring P is n-semi-Armendariz, it follows that (Āx̄)n−1B̄ = 0 and thus
An−1Bxn−1 ∈ (xn). Hence An−1B = 0 and consequently rn−1 = 0. Since R is
reduced, we obtain r = 0, as desired.

(iii) ⇒ (i): Set D(R) = Dn(D2(R)). To the end of the proof the ring D(R) is
considered as a subring of U2n(R). For any B ∈ D(R) and i, j ∈ {1, 2, . . . , 2n},
B(ij) denotes the (i, j) entry of the matrix B.

Obviously N(R) = {B ∈ D(R) : B(ii) = 0 for any i ∈ {1, 2, . . . , 2n}} is an
ideal of D(R). We start with describing the form of any product of n matrices
from N(R), which will be crucial in the proof of the implication (iii) ⇒ (i). The
reader should note that in this part of the proof we do not put any assumption

on the ring R.
Let B1, B2, . . . , Bn ∈ N(R) and let B = B1B2 · · ·Bn. Then for any i, j ∈

{1, 2, . . . , 2n}, the (i, j) entry of B is a sum of products of the form

(6) b = B
(k0k1)
1 B

(k1k2)
2 B

(k2k3)
3 · · ·B(kn−1kn)

n , where k0 = i and kn = j.

Assume b 6= 0. Then B
(ktkt+1)
t 6= 0 for every t ∈ {0, 1, . . . , n − 1}, and since

Bt ∈ N(R), it follows that kt < kt+1. Thus

1 ≤ i = k0 < k1 < k2 < · · · < kn−1 < kn = j ≤ 2n.

Notice that for any matrix A ∈ D(R) = Dn(D2(R)) we have A(pq) = 0 for
every pair (p, q) with even p and odd q. Hence, since b 6= 0, if kt is even for
some t ∈ {0, 1, . . . , n − 1}, then so are kt+1, kt+2, . . . , kn. In particular, if k0

would be even, then so would be k1, k2, . . . , kn, and we would obtain n + 1
even integers in the interval 〈1, 2n〉, a contradiction. Thus k0 is odd. If also
k1, k2, . . . , kn would be odd, then there would be n + 1 odd integers between
1 and 2n, a contradiction. Therefore, there exists m ∈ {1, 2, . . . , n} such that
k0, k1, . . . , km−1 are odd and km, km+1, . . . , kn are even. Hence

(7) k0 + 2(m− 1) ≤ km−1 and km ≤ kn − 2(n−m).



ON SEMI-ARMENDARIZ MATRIX RINGS 791

Since furthermore km−1 < km, it follows from (7) that 2n− 1 ≤ kn − k0, and
thus k0 = 1 and kn = 2n. Putting these values of k0 and kn into (7), we obtain
km−1 = 2m− 1 and km = 2m.

By the above, if b 6= 0, then i = 1, j = 2n and the sequence

(k0, k1, k2, . . . , kn−1, kn)

is of the following form:

(8) (1, 3, . . . , 2m− 1
︸ ︷︷ ︸

odd integers

, 2m, 2m+ 2, . . . , 2n
︸ ︷︷ ︸

even integers

), for some m ∈ {1, 2, . . . , n}.

The sequence (8) will be denoted by γm and the set of all such sequences will
be denoted by Cn, i.e., Cn = {γ1, γ2, . . . , γn}. For example, C4 consists of the
following four sequences:

γ1 = (1, 2, 4, 6, 8), γ2 = (1, 3, 4, 6, 8), γ3 = (1, 3, 5, 6, 8), γ4 = (1, 3, 5, 7, 8).

To simplify notation, for any γ = (k0, k1, . . . , kn−1, kn) ∈ Cn, the product (6)
will be denoted by γ(B1, B2, . . . , Bn), i.e.,

γ(B1, B2, . . . , Bn) = B
(k0k1)
1 B

(k1k2)
2 B

(k2k3)
3 · · ·B(kn−1kn)

n .

Summarizing, and using the just introduced notation, if B1, B2, . . . , Bn ∈
N(R), then the (1, 2n) entry of the product B1B2 · · ·Bn is equal to the sum
∑n

m=1 γm(B1, B2, . . . , Bn), and all other entries are equal to 0, i.e.,

(9) B1B2 · · ·Bn =

(
n∑

m=1

γm(B1, B2, . . . , Bn)

)

E1,2n.

Now we are in a position to prove the implication (iii) ⇒ (i). Assume R
is a reduced commutative ring and n ≥ 2 is an integer satisfying (iii), i.e., we
have nr = 0 ⇒ r = 0 for any r ∈ R. To prove (i), we consider an arbitrary
polynomial

f = A0 +A1x+ · · ·+Atx
t ∈ D(R)[x] such that fn = 0,

and we have to show that

(10) As1As2 · · ·Asn = 0 for any n-tuple (s1, s2, . . . , sn).

Since N(R) is an ideal of D(R) and the ring D(R)/N(R) is isomorphic to R,
it follows that D(R)/N(R) is reduced. Hence also the ring

D(R)[x]/N(R)[x] ∼= (D(R)/N(R))[x]

is reduced and from fn = 0 we deduce that f ∈ N(R)[x]. Thus A0, A1, . . . , At ∈
N(R), and (9) implies that to prove (10) it suffices to show that for any m ∈
{1, 2, . . . , n} and n-tuple (s1, s2, . . . , sn) we have

(11) γm(As1 , As2 , . . . , Asn) = 0.
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To prove (11), let Φ : D(R)[x] → D(R[x]) be the canonical isomorphism
and let F = Φ(f). Since f ∈ N(R)[x] and fn = 0, we have F ∈ N(R[x]) and
Fn = 0. Hence (9) implies

(12)

n∑

m=1

γm(F, F, . . . , F
︸ ︷︷ ︸

n times

) = 0.

Recall that γm denotes the sequence (8) and thus

(13)
γm(F, F, . . . , F )

= F (1,3)F (3,5) · · ·F (2m−3,2m−1)F (2m−1,2m)F (2m,2m+2) · · ·F (2n−2,2n).

Note that since F ∈ D(R[x]) = Dn(D2(R[x])), for any odd i ∈ {1, 2, . . . , 2n} we
have F (i,i+1) = F (1,2) and if furthermore i ≤ 2n−3, then F (i,i+2) = F (i+1,i+3).
Moreover, since R is commutative, the ring R[x] is commutative. Combining
all of these with (13), we obtain

γm(F, F, . . . , F ) = F (2,4)F (4,6) · · ·F (2m−2,2m)F (1,2)F (2m,2m+2) · · ·F (2n−2,2n)

= F (1,2)F (2,4)F (4,6) · · ·F (2m−2,2m)F (2m,2m+2) · · ·F (2n−2,2n)

= γ1(F, F, . . . , F ).

We have shown that

(14) γm(F, F, . . . , F ) = γ1(F, F, . . . , F ) for any m ∈ {1, 2, . . . , n},

and thus (12) implies

(15) n · γ1(F, F, . . . , F ) = 0.

Since by (iii) we have nr = 0 ⇒ r = 0 for any r ∈ R, it follows from (15) that
γ1(F, F, . . . , F ) = 0, and thus, by (14), for any m ∈ {1, 2, . . . , n} we have

(16) γm(F, F, . . . , F ) = 0.

We will show that (16) implies (11), which is enough to complete the proof.
Let γm = (k0, k1, k2, . . . , kn−1, kn) (at this point, the exact form of γm does not
matter). From (16) we obtain

(17) F (k0k1)F (k1k2) · · ·F (kn−1kn) = 0.

For any i ∈ {1, 2, . . . , n}, set

fi = A
(ki−1ki)
0 +A

(ki−1ki)
1 x+ · · ·+A

(ki−1ki)
t xt ∈ R[x].

Since F = Φ(f), it follows from (17) that

(18) f1f2 · · · fn = 0.

By assumption the ring R is reduced, so R is Armendariz as well, and thus
(18) and Proposition 1.1 imply that for any n-tuple (s1, s2, . . . , sn) we have

A(k0k1)
s1

A(k1k2)
s2

· · ·A(kn−1kn)
sn

= 0,
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that is,
γm(As1 , As2 , . . . , Asn) = 0 for any m ∈ {1, 2, . . . , n}.

Since As1 , As2 , . . . , Asn ∈ N(R), from (9) we obtain

As1As2 · · ·Asn = 0,

which is just condition (10). The proof is complete. �

Now we are in a position to answer Jeon-Lee-Ryu’s problem (5).

Example 3.2. (There exists a nonreduced ring R such that for any n ≥ 2
the ring Dn(R) is n-semi-Armendariz.) Let, as usually, Z denote the ring of
integers. The ring R = D2(Z) is not reduced but, by Theorem 3.1, for any
n ≥ 2 the ring Dn(R) is n-semi-Armendariz.

Remark 3.3. Using the same arguments as in the proof of Theorem 3.1 one can
prove the following generalization of Theorem 3.1.

Let S be a reduced subring of a commutative Armendariz ring R and let n ≥ 2
be an integer. Then the following conditions are equivalent:

(i) The ring Dn(D2(S,R)) is n-semi-Armendariz;
(ii) The ring (D2(S,R)[x])/(xn) is n-semi-Armendariz, where (xn) denotes

the ideal of D2(S,R)[x] generated by xn;
(iii) nr = 0 ⇒ r = 0 for any r ∈ R. �

Let R be a ring and let I be a proper ideal of R. Assume R/I and I are n-
semi-Armendariz, where I is considered as an n-semi-Amendariz ring without
unity. One could conjecture that in this case R has to be n-semi-Armendariz.
However, this is not the case as shown in [7, Example 2.2]. Below we use
Theorem 3.1 to construct another example of a ring R with an ideal I such
that R/I and I are n-semi-Armendariz but R is not n-semi-Armendariz.

Example 3.4. (For any n ≥ 2 there exist a ring R and an ideal I of R such

that I and R/I are n-semi-Armendariz, but R is not n-semi-Armendariz.) Let
n = pα1

1 pα2

2 · · · pαk

k be the prime factorization of n and let m = p1p2 · · · pk. Note
that the ring Zm of integers modulo m is reduced. Set R = (D2(Zm)[x])/(xn)
and I = (xn−1)/(xn). Then I is an ideal of R with I2 = 0 and thus I is n-semi-
Armendariz. Furthermore, the ring R/I ∼= (D2(Zm)[x])/(xn−1) is isomorphic
to a subring of Un−1(D2(Zm)) (see the proof of the implication (i) ⇒ (ii)
in Theorem 3.1). Since N = N2(Zm) is an ideal of D2(Zm) such that the
ring D2(Zm)/N ∼= Zm is reduced and N2 = 0, Proposition 2.4 implies that
the ring Un−1(D2(Zm)) is n-semi-Armendariz, and thus the ring R/I is n-
semi-Armendariz as well. Finally note that by Theorem 3.1 the ring R is not
n-semi-Armendariz.

Recall that a ring R is said to be abelian if every idempotent of R is central.
In [7, Example 2.4(1)] it was shown that an abelian prime ring need not be
semi-Armendariz. Bellow we show the same, constructing a simpler example
than this in [7].
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Example 3.5. (An abelian prime ring need not be semi-Armendariz.) Let S
be a domain and let n ≥ 2. Set R = Dn+2(S). Then by [5, Lemma 2] the ring
R is abelian. To see that R is prime, consider any non-zero matrices A,B ∈ R.
Let aij and bkl be any nonzero entries of A and B, respectively. Then the (i, l)
entry of AEjkB is equal to aijbkl 6= 0. Thus ARB 6= 0, proving that R is prime.
Finally, Lemma 2.9 implies that R is not n-semi-Armendariz and thus R is not
semi-Armendariz.

We close the paper with an example of a commutative ring which is not
semi-Armendariz (cf. [7, Example 2.4(2)]).

Example 3.6. (A commutative ring need not be semi-Armendariz.) Obvious-
ly, the ring R = D2(D2(Z2)) is commutative. However, R is not 2-semi-
Armendariz by Theorem 3.1 and thus R is not semi-Armendariz.
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