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Abstract. This note focuses on a ring property in which upper and lower
nilradicals coincide, as a generalizations of symmetric rings. The concept
of symmetric ideal and ring in the noncommutative ring theory was ini-
tially introduced by Lambek, as an extension of the usual commutative

ideal theory. The investigation of symmetric rings provided many useful
results to the study in the noncommutative ring theory. So the results
obtained from this study may be applicable to observing the structure of
zero divisors in various kinds of algebraic systems containing matrix rings
and polynomial rings.

1. Introduction

Throughout this note all rings are associative with identity unless otherwise
stated. Lambek introduced the concept of symmetric in the noncommutative
ring theory as an extension of the usual commutative ideal theory, unifying the
sheaf representation of commutative rings and reduced rings, in [16]. Lambek
called a right ideal I of a ring R symmetric if rst ∈ I implies rts ∈ I for all
r, s, t ∈ R, and if the zero ideal of R is symmetric, then R is usually called
symmetric, while Anderson-Camillo [2] used the term ZC3 for this concept. It
is proved by Lambek that a ring R is symmetric if and only if r1r2 · · · rn = 0
implies rσ(1)rσ(2) · · · rσ(n) = 0 for any permutation σ of the set {1, 2, . . . , n},
where n ≥ 1 and ri ∈ R for all i (see [16, Proposition 1]). Anderson-Camillo also
obtained this result independently in [2, Theorem I.1]. A ring is usually called
reduced if it has no nonzero nilpotent elements. Commutative rings are clearly
symmetric. Reduced rings are symmetric by [2, Theorem I.3]. There exist many
non-reduced commutative rings, and many noncommutative reduced rings. A
ring R is called IFP [5] if ab = 0 implies aRb = 0 for a, b ∈ R. Shin [22] used
the term SI for the IFP, while Narbonne [19] used semicommutative in place of
the IFP. In this note, we choose the term “semicommutative”, so as to cohere
with references. A ring is usually called abelian if every idempotent is central.
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Symmetric rings are semicommutative, and semicommutative rings are abelian,
but not conversely for each case.

For a ring R, N∗(R), N∗(R), and N(R) denote the lower nilradical (i.e.,
the prime radical), the upper nilradical (i.e., the sum of all nil ideals), and the
set of all nilpotent elements in R, respectively. It is well-known that N∗(R) ⊆
N∗(R) ⊆ N(R).

Recall that a ring R is called nil-semicommutative [18, Definition 2.1] if
ab = 0 implies aRb = 0 for a, b ∈ N(R). Clearly semicommutative rings are
nil-semicommutative. Nil-semicommutative rings need not be abelian by [18,
Example 2.2]. Recently, Chakraborty and Das called a ring R right (resp., left)
nil-symmetric [6, Definition 1] if abc = 0 (resp., cab = 0) implies acb = 0 for
a, b ∈ N(R) and c ∈ R, and the ring R is nil-symmetric if it is both right
and left nil-symmetric. It is proved that every right (left) nil-symmetric ring is
nil-semicommutative but not conversely by [6, Proposition 7 and Example 11],
respectively.

For a ring R, Matn(R) and Un(R) denote the n by n full matrix ring and
the upper triangular matrix ring over R, respectively. We note that

N(Un(R)) =















N(R) R R · · · R
0 N(R) R · · · R
0 0 N(R) · · · R
...

...
...

. . .
...

0 0 0 · · · N(R)















.

LetDn(R) = {(aij) ∈ Un(R) | a11 = · · · = ann} and use Eij for the matrix with
(i, j)-entry 1 and elsewhere 0. We denote Zn by the ring of integers modulo n.

2. Definition

We consider the following condition which is a generalization of nil-sym-
metric rings for a given ring R:

(∗) abc = 0 implies acb = 0 for all a, b, c ∈ N(R).

Every right nil-symmetric ring does clearly satisfy the condition (∗), but the
converse does not hold by next example.

Example 2.1. Consider the ring R = U3(A) over a reduced ring A. Then R
obviously satisfies the condition (∗), since

N(R) =





0 R R
0 0 R
0 0 0



 .

But R is not right nil-symmetric by [6, Example 11].

Hence we have a new class of rings which is a generalization of (nil-) sym-
metric rings as follows.
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Definition 2.2. A ring is called weak right (resp., left) nil-symmetric if it
satisfies the condition (∗) (resp., the left version of the condition (∗)), and
the ring R is called weak nil-symmetric if it is both weak left and right nil-
symmetric.

The weak nil-symmetric ring property is not left-right symmetric by the
following.

Example 2.3. Let K be a field and A = K〈a, b〉 be the free algebra with
noncommuting indeterminates a, b over K.

(1) Let I be the ideal of A generated by

a3, ab and b2.

Set R = A/I and let a, b coincide with their images in R for simplicity. Then

N(R) = {k0a+ k1a
2 + k2b+ k3ba+ k4ba

2 | k0, k1, k2, k3, k4 ∈ K}.

We next show that R is weak right nil-symmetric. Take α, β, γ ∈ N(R).
Then

α = h0a+ h1a
2 + h2b+ h3ba+ h4ba

2,

β = k0a+ k1a
2 + k2b+ k3ba+ k4ba

2,

γ = l0a+ l1a
2 + l2b+ l3ba+ l4ba

2

for some hi, ki, li ∈ K. Letting αβγ = 0, we have

(h0a+ h1a
2 + h2b + h3ba+ h4ba

2)(k0a+ k1a
2 + k2b+ k3ba+ k4ba

2)

(l0a+ l1a
2 + l2b+ l3ba+ l4ba

2)

= (h0k0a
2 + h2k0ba+ h2k1ba

2 + h3k0ba
2)(l0a+ l1a

2 + l2b+ l3ba+ l4ba
2)

= h2k0l0ba
2 = 0.

This implies h2k0l0 = 0, entailing αγβ = h2l0k0ba
2 = h2k0l0ba

2 = 0. Thus R
is weak right nil-symmetric.

However, a(ba) = 0 but (ba)a = ba2 6= 0 for a, b ∈ N(R). Thus R is not
weak left nil-symmetric.

(2) Let J be the ideal of A generated by

a3, ba and b2.

Let R = A/J . Then

N(R) = {k0a+ k1a
2 + k2b+ k3ab+ k4a

2b | k0, k1, k2, k3, k4 ∈ K}.

Then R can be shown to weak left nil-symmetric, but not weak right nil-
symmetric, through a similar computation to (1).

Due to Levitzki, an element a of a ring R is called strongly nilpotent if every
sequence a0, a1, a2, . . ., such that a0 = a and an+1 ∈ anRan for all n ≥ 0, is
eventually zero. It is well-known that the prime radical is the set of all strongly
nilpotent elements.
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Theorem 2.4. If R is a weak right (left) nil-symmetric ring, then N∗(R) =
N∗(R).

Proof. Let R be a weak right nil-symmetric ring and a ∈ N∗(R). We will show
that a is strongly nilpotent in R, i.e., a ∈ N∗(R). Let a0 = a and consider a
sequence a0, a1 = a0r0a0, a2 = a1r1a1, . . . , an+1 = anrnan, where ri’s are taken
arbitrarily in R and n ≥ 0.

Suppose a2 = 0. Then a20 = 0 implies 0 = (a0a0)(r0a0r1a0r0). Note
r0a0r1a0r0 ∈ N∗(R). Since R is weak right nil-symmetric, we have

0 = (a0a0)(r0a0r1a0r0) = a0(r0a0r1a0r0)a0 = a1r1a1 = a2.

Suppose a3 = 0. Then a30 = 0 implies 0 = (a0a
2
0)(r0a0r1a0r0). Note

r0a0r1a0r0 ∈ N∗(R). Since R is weak right nil-symmetric, we have

0 = (a0a
2
0)(r0a0r1a0r0) = a0(r0a0r1a0r0)a0a0.

Next note that r2a0r0a0r1a0r0 ∈ N∗(R). Since R is weak right nil-symmetric,
we have

0 = (a0r0a0r1a0r0a0)(a0)(r2a0r0a0r1a0r0)

= (a0r0a0r1a0r0a0)(r2a0r0a0r1a0r0)(a0)

= a2r2a2 = a3.

We will extend this method to the general case. Let an = 0 for n ≥ 4 and we
will use freely the assumption that R is weak right nil-symmetric. Note that
ai ∈ N∗(R) for all i ≥ 0. Since 0 = an−1

0 a0(a0r0), we have

0 = an−1
0 (a0r0)a0 = an−1

0 a1.

Since 0 = an−2
0 a0a1(r0a0r1), we have

0 = an−2
0 a0a1(r0a0r1) = an−2

0 a0(r0a0r1)a1 = an−2
0 a1r1a1 = an−2

0 a2.

Since 0 = an−3
0 a0a2(r0a0r1a1r2), we have

0 = an−3
0 a0a2(r0a0r1a1r2) = an−3

0 a0(r0a0r1a1r2)a2

= an−3
0 a1r1a1r2a2 = an−3

0 a3.

Now assume that an−k
0 ak = 0 for k ≤ n. Since

0 = a
n−(k+1)
0 a0ak(r0a0r1a1r2 · · · rk−1ak−1rk),

we have

0 = a
n−(k+1)
0 a0ak(r0a0r1a1r2 · · · rk−1ak−1rk)

= a
n−(k+1)
0 a0(r0a0r1a1r2 · · · rk−1ak−1rk)ak

= a
n−(k+1)
0 akrkak = a

n−(k+1)
0 ak+1.

We inductively obtain a0an−1 = 0 by the preceding result. Since

0 = a0an−1(r0a0r1a1r2 · · · rn−2an−2rn−1),
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we finally have

0 = a0an−1(r0a0r1a1r2 · · · rn−2an−2rn−1)

= a0(r0a0r1a1r2 · · · rn−2an−2rn−1)an−1

= a1r1a1(r2a2r3 · · · rn−2an−2rn−1)an−1

= a2r2a2(r3a3r4 · · · rn−2an−2rn−1)an−1

= an−2(rn−2an−2rn−1)an−1 = an−1rn−1an−1 = an.

This implies that a is strongly nilpotent, proving that N∗(R) = N∗(R).
It can be similarly obtained that N∗(R) = N∗(R), in case of R is a weak

left nil-symmetric ring. �

The converse of Theorem 2.4 need not hold as can be seen by R = Matn(A)
for n ≥ 4 over a simple ring A. Note N∗(R) = N∗(R) = 0. Since E12E34E23 =
0 = E23E12E34 and E12E23E34 = E14, R is neither weak left nil-symmetric
nor weak right nil-symmetric.

Considering Theorem 2.4, one may ask whether R is a weak one-sided nil-
symmetric ring when N∗(R) = N∗(R) = N(R). But the answer is negative by
Example 2.3. The ring R in Example 2.3(1) (resp., Example 2.3(2)) satisfies

N∗(R) = N∗(R) = N(R) = RaR+RbR,

but it is not weak left (resp., right) nil-symmetric.
As noted earlier, every right (left) nil-symmetric ring is both nil-semicommu-

tative and weak right (left) nil-symmetric, but not conversely. Moreover, the
class of weak right nil-symmetric rings and the class of nil-semicommutative
rings do not imply each other by the following example.

Example 2.5. (1) We apply [3, Example 4.8]. LetK be a field and A = K〈a, b〉
be the free algebra with noncommuting indeterminates a, b over K. Let I be
the ideal of A generated by a2. Set R = A/I and let a, b coincide with their
images in R for simplicity. It is easily checked that

N(R) = {ka+ afa | k ∈ K, f ∈ A}.

So R is weak right nil-symmetric. But R is not nil-semicommutative by [18,
Theorem 2.5] as can be seen by a2 = 0 and aba 6= 0.

(2) We use the ring in [13, Example 2]. Let

A = Z2〈a0, a1, a2, b0, b1, b2, c〉

be the free algebra generated by noncommuting indeterminates a0, a1, a2, b0, b1,
b2, c over Z2. Let I be the ideal of A generated by

a0b0, a1b2 + a2b1, a0b1 + a1b0, a0b2 + a1b1 + a2b0, a2b2,

a0rb0, a2rb2, (a0 + a1 + a2)r(b0 + b1 + b2) with r ∈ A

and

r1r2r3r4 with r1, r2, r3, r4 ∈ A0,
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where A0 is the subset of all elements in A of zero constants. Set R = A/I.
Then R is semicommutative (hence nil-semicommutative) by the argument in
[13, Example 2]. But R is not weak right nil-symmetric as can be seen by
c̄ā0b̄0 = 0 and c̄b̄0ā0 6= 0, noting ā0, b̄0, c̄ ∈ N(R).

Proposition 2.6. If R is a weak right nil-symmetric ring, then IJK = 0
implies IKJ = 0 for all nil ideals I, J and K of R. The converse holds for a

nil-semicommutative ring R.

Proof. Suppose that R is weak right nil-symmetric and let IJK = 0 for nil
ideals I, J and K of R. Then, for all a ∈ I, b ∈ J , and c ∈ K, we have abc = 0.
Since a, b, c ∈ N(R), acb = 0 and this yields IKJ = 0.

Conversely, let R be a nil-semicommutative ring and assume that IJK = 0
implies IKJ = 0 for all nil ideals I, J,K of R. Let abc = 0 for a, b, c ∈ N(R).
Then RaRbRcR = 0 since R is nil-semicommutative. Here RaR,RbR,RcR
are nil ideals of R by [18, Theorem 2.5]. Thus (RaR)(RcR)(RbR) = 0 by
assumption, entailing acb = 0. Thus R is weak right nil-symmetric. �

The condition “R is a nil-semicommutative ring” in Proposition 2.6 cannot
be dropped by the following example.

Example 2.7. Consider the ring R = Mat3(A), over a reduced ring A. Then
R is not weak right nil-symmetric by Example 3.6(1) to follow. Moreover R
is not nil-semicommutative: Indeed, E2

12 = 0 for E12 ∈ N(R), but 0 6= E12 =
E12E21E12 ∈ E12RE12.

Since R has no nonzero nil ideals, R always satisfies the condition that
IJK = 0 implies IKJ = 0 for all nil ideals I, J and K of R.

3. Structure and properties

Following the literature, the index (of nilpotency) of a nilpotent element a
in a ring R is the least positive integer n such that an = 0, write i(a) for n,
the index (of nilpotency) of a subset S of R is the supremum of the indices (of
nilpotency) of all nilpotent elements in S, write i(S), and if such a supremum
is finite, then S is said to be of bounded index (of nilpotency).

Proposition 3.1. Let R be a ring of bounded index with i(R) = 2.
(1) If R is weak right nil-symmetric, then N(R) forms a subring of R such

that ab = −ba for all a, b ∈ N(R).
(2) If R is a weak right nil-symmetric ring of characteristic 2, then N(R)

forms a commutative subring of R.

Proof. Let R be weak right nil-symmetric and a, b ∈ N(R). Then a2 = 0
and b2 = 0 by hypothesis, and this yields a(a − b)b = aab − abb = 0. So
ba(a − b) ∈ N(R). Since R is weak right nil-symmetric, b(ba(a − b))a = 0
implies ba(ba(a−b)) = 0. It then follows that babab = 0 and (ba)3 = 0, entailing
(ba)2 = 0 and (ab)2 = 0 by hypothesis. Next consider (a− b)k for k = 2, 3, . . ..
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(a−b)2 = a2−ab−ba+b2 = −ab−ba, (a−b)3 = (−ab−ba)(a−b) = −aba+bab,
and

(a− b)4 = (−aba+ bab)(a− b) = baba+ abab = 0,

entailing a− b ∈ N(R). Then (a− b)2 = 0 by hypothesis, forcing ab = −ba.
(2) This is an immediate consequence of (1). �

Proposition 3.2. (1) Let R be a ring. If N(R)3 = 0, then R is weak nil-

symmetric.

(2) The class of weak right nil-symmetric rings is closed under subrings.

(3) Let R be a ring such that the multiplicative group of units in R, U(R)
say, is an Abelian group. Then R is weak nil-symmetric.

(4) Let Rλ (λ ∈ Λ) be rings. Then Rλ is weak right nil-symmetric for

all λ ∈ Λ if an only if the direct product
∏

λ∈ΛRλ of Rλ is weak right nil-

symmetric.

(5) Let R be a ring and e be a central idempotent in R. Then both eR
and (1 − e)R are weak right nil-symmetric if and only if R is weak right nil-

symmetric.

Proof. (1) It is an immediate consequence of the definition of a weak nil-
symmetric ring.

(2) This comes from the fact that N(S) = S ∩N(R) for any ring R and any
subring S of R.

(3) Let a, b, c ∈ N(R). Then 1−a, 1− b, 1− c ∈ U(R). But U(R) is Abelian,
and so we have (1−a)(1−b) = (1−b)(1−a) (resp., (1−b)(1−c) = (1−c)(1−b)).
This yields ab = ba (resp., bc = cb), entailing bac = 0 (resp., acb = 0) from
abc = 0. Thus R is weak nil-symmetric.

(4) By (2), it suffices to establish necessity. Note that N(
∏

λ∈ΛRλ) ⊆
∏

λ∈Λ N(Rλ). Suppose that Rλ is weak right nil-symmetric for all λ ∈ Λ. Let
(aλ)(bλ)(cλ) = 0 for (aλ), (bλ), (cλ) ∈ N(

∏

λ∈ΛRλ). Then aλ, bλ, cλ ∈ N(Rλ)
satisfying aλbλcλ = 0 for all λ. Since Rλ is weak right nil-symmetric, aλcλbλ =
0 for all λ ∈ Λ. This yields (aλ)(cλ)(bλ) = 0, concluding that R is weak right
nil-symmetric.

(5) It is shown by (2) and (4), since R ∼= eR⊕ (1 − e)R. �

The following argument shows that Proposition 3.2(1, 3) need not hold when
the hypotheses do not hold. In fact, we recall the weak right nil-symmetric ring
R in Example 2.3(1) (which is not weak left nil-symmetric). Let

α = h0a+ h1a
2 + h2b+ h3ba+ h4ba

2, β = k0a+ k1a
2 + k2b+ k3ba+ k4ba

2,

γ = l0a+ l1a
2 + l2b+ l3ba+ l4ba

2 and δ = m0a+m1a
2 +m2b+m3ba+m4ba

2

be in R. Then

αβγδ = h2k0l0ba
2(m0a+m1a

2 +m2b+m3ba+m4ba
2) = 0,

entailing N(R)4 = 0. But N(R)3 6= 0 since baa 6= 0. Moreover U(R) is
non-Abelian since 1− a− b = (1− a)(1− b) 6= (1− b)(1− a) = 1− a− b+ ba.
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As a corollary of Proposition 3.2(1, 2), we obtain the following.

Corollary 3.3. If R is a reduced ring, then both Un(R) and Dn(R) are weak

nil-symmetric for n = 2, 3.

Based on Corollary 3.3, one may suspect that Un(R) over a reduced ring R
may be weak nil-symmetric for n ≥ 4. But the following example eliminates
the possibility.

Example 3.4. For any ring A, consider R = D4(A). For

a =









0 1 1 1
0 0 1 1
0 0 0 1
0 0 0 0









= c and b =









0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 0









∈ N(R),

we have abc = 0, but

acb =









0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0









6= 0.

Thus R is not weak right nil-symmetric.
By Proposition 3.2(2), we conclude that both Un(A) and Dn(A) for any

ring A and n ≥ 4 cannot be weak right nil-symmetric, noting that D4(A) is
isomorphic to a subring of Un(A) (n ≥ 4) and Dn(A) (n ≥ 5).

The following example also illuminates that U3(R) and D3(R) are not weak
right nil-symmetric any more, if we take the weaker condition “R is symmetric”
instead of “R is reduced” in Corollary 3.3.

Example 3.5. Let R = Z4. Then R is a non-reduced symmetric (hence weak
nil-symmetric) ring. Take

a =





2 1 0
0 2 2
0 0 2



 , b =





0 0 0
0 0 1
0 0 0



 , c =





0 1 1
0 0 2
0 0 0



 ∈ N(D3(R)).

In fact, a3 = 0, b2 = 0 and c3 = 0. Then abc = 0 but

0 6=





0 0 2
0 0 0
0 0 0



 = acb.

This shows that D3(R) is not weak right nil-symmetric. Consequently, U3(R)
is not weak right nil-symmetric either, by Proposition 3.2(2).

We next see that the n by n full matrix ring Matn(A) over any ring A for
n ≥ 2 cannot be weak right nil-symmetric by the following example.
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Example 3.6. For any ring A, let R = Mat2(A). Then for

a =

(

1 1
−1 −1

)

= b and c =

(

0 1
0 0

)

∈ N(R),

we get abc = 0. But

acb =

(

−1 −1
1 1

)

6= 0,

implying that R is not weak right nil-symmetric. So Matn(A) is not weak right
nil-symmetric by Proposition 3.2(2) even for the case of n ≥ 3.

The next example shows that the class of weak right nil-symmetric rings
is not closed under homomorphic images, being compared with Proposition
3.2(2).

Example 3.7. Let R be the ring of quaternions with integer coefficients. Then
R is a domain and thus weak right nil-symmetric. However, for any odd prime
integer q, there exists a ring isomorphism R/qR ∼= Mat2(Zq) by the argument
in [10, Exercise 2A]. But Mat2(Zq) is not weak right nil-symmetric by Example
3.6, and thus R/qR cannot be weak right nil-symmetric. Therefore the class of
weak right nil-symmetric rings is not closed under homomorphic images.

For a ring R and n ≥ 2, let Vn(R) be the ring of all matrices (aij) in Dn(R)
such that ast = a(s+1)(t+1) for s = 1, . . . , n− 2 and t = 2, . . . , n− 1. Note that

Vn(R) ∼=
R[x]

xnR[x] , where R[x] denotes the polynomial ring with an indeterminate

x over R. We use (a1, a2, . . . , an) ∈ Vn(R) to denote














a1 a2 a3 · · · an
0 a1 a2 · · · an−1

0 0 a1 · · · an−2

...
...

...
. . .

...
0 0 0 · · · a1















.

For a reduced ring R and n ≥ 2, Vn(R) is symmetric by [11, Theorem 2.3]
and so it is weak nil-symmetric. Here it is natural to ask whether Vn(R) is
weak right nil-symmetric over a symmetric ring R. But the following answers
negatively.

Example 3.8. We adopt the ring and the argument in [14, Example 2.1]. Let

A = Z2〈a0, a1, a2, b0, b1, b2, c〉

be the free algebra generated by noncommuting indeterminates a0, a1, a2, b0, b1,
b2, c over Z2. Next let I be the ideal of A generated by

a0b0,a0b1 + a1b0, a0b2 + a1b1 + a2b0, a1b2 + a2b1, a2b2, a0rb0, a2rb2,

b0a0,b0a1 + b1a0, b0a2 + b1a1 + b2a0, b1a2 + b2a1, b2a2, b0ra0, b2ra2,

(a0+a1 + a2)r(b0 + b1 + b2), (b0 + b1 + b2)r(a0 + a1 + a2), and r1r2r3r4,
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where the constant terms of r, r1, r2, r3, r4 ∈ A are zero. Now set R = A/I.
Then R is a symmetric ring by the argument in by [11, Example 3.1].

We identify a0, a1, a2, b0, b1, b2, c with their images in R for simplicity. Con-
sider the extension ring D2(R) of R and take

α = (a0, a0, . . . , a1), β = (b0, b0, . . . , b1) and γ = (c, c, . . . , c) ∈ N(Vn(R)).

It can be also easily checked that αβγ = 0, by the construction of I. But

αγβ = (a0cb0, a0cb0, . . . , a0cb1 + a1cb0) = (0, 0, . . . , a0cb1 + a1cb0) 6= 0

since a1cb0 + a0cb1 /∈ I. Thus Vn(R) is not weak right nil-symmetric for n ≥ 2.

Given a ring R and an (R,R)-bimodule M , the trivial extension of R by
M is the ring T (R,M) = R ⊕ M with the usual addition and the following
multiplication: (r1,m1)(r2,m2) = (r1r2, r1m2 + m1r2). This is isomorphic to
the ring of all matrices ( r m

0 r ), where r ∈ R and m ∈ M and the usual matrix
operations are used.

Notice that Example 3.8 also illuminates that the trivial extension of a weak
right nil-symmetric ring need not be weak right nil-symmetric, since T (R,R) =
V2(R).

The property of weak right nil-symmetric and the abelian ring property do
not follow each other by Corollary 3.3 and Example 3.4, noting that U3(A) is
non-abelian and D4(A) is abelian by [12, Lemma 2] for any reduced ring A.

J(R) denotes the Jacobson radical of a given ringR. Following the literature,
R is semilocal if R/J(R) is Artinian, and R is semiperfect if R is semilocal and
idempotents can be lifted modulo J(R). Local rings are abelian and semilocal
obviously.

Proposition 3.9. Let R be an abelian ring. Then R is weak right nil-symmetric

and semiperfect if and only if R is a finite direct sum of local weak right nil-

symmetric rings.

Proof. Suppose that R is weak right nil-symmetric and semiperfect. Since R is
semiperfect, R has a finite orthogonal set {e1, e2, . . . , en} of local idempotents
whose sum is 1 by [15, Proposition 3.7.2], say R =

∑n
i=1 eiR such that each

eiRei is a local ring. Since R is abelian and weak right nil-symmetric, eiR =
eiRei is weak right nil-symmetric by Proposition 3.2(3).

Conversely assume that R is a finite direct sum of local weak right nil-
symmetric rings. Then R is semiperfect since local rings are semiperfect by [15,
Corollary 3.7.1], and moreover R is weak right nil-symmetric by Proposition
3.2(2). �

Byminimal, we mean “having smallest cardinality” of a given kind of a finite
ring. |R| means the order of a given ring R.

Proposition 3.10. If R is a minimal noncommutative weak right nil-sym-

metric ring, then R is of order 8 and is isomorphic to U2(Z2).
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Proof. Let R be a minimal noncommutative weak right nil-symmetric ring.
Eldridge proved that if the order of R has a cube free factorization, then R is
a commutative ring in [8, Theorem]. This forces |R| ≥ 23. If |R| = 23, then
R is isomorphic to U2(Z2) by [8, Proposition]. Notice that U2(Z2) is a weak
right nil-symmetric ring by Corollary 3.3. This yields that R is of order 8 and
is isomorphic to U2(Z2). �

4. Extensions

In this section we study the structure of weak right nil-symmetric rings
related to several sorts of ordinary ring extensions.

A ring R is called directly finite if ab = 1 implies ba = 1 for a, b ∈ R. Recall
that weak right nil-symmetric rings and abelian rings are independent of each
other, and abelian rings (e.g., symmetric rings) are clearly directly finite.

Proposition 4.1. Every weak right nil-symmetric ring is directly finite.

Proof. Let R be a weak right nil-symmetric ring and assume on the contrary
that R is not directly finite. Then R contains an infinite set of matrix units,
say

{E11, E12, E13, . . . , E21, E22, E23, . . .},

by [9, Proposition 5.5]. Consider E21, E12, E23 ∈ N(R). Then E21E23E12 = 0
but E21E12E23 = E23 6= 0, showing that R is not weak right nil-symmetric, a
contradiction. Thus R is directly finite. �

Let A be an algebra over a commutative ring S. Due to Dorroh [7], the
Dorroh extension of A by S is the Abelian group A ⊕ S with multiplication
given by (r1, s1)(r2, s2) = (r1r2 + s1r2 + s2r1, s1s2) for ri ∈ A and si ∈ S. We
use A× S to denote the Dorroh extension of A by S.

Theorem 4.2. Let R be an algebra with identity over a commutative reduced

ing S. Then R is weak right nil-symmetric if and only if the Dorroh extension

D = R× S is weak right nil-symmetric.

Proof. It can be easily checked thatN(D) = (N(R), 0) since S is a commutative
reduced ring. For any (r1, 0), (r2, 0), (r3, 0) ∈ N(D),

(r1, 0)(r2, 0)(r3, 0) = (0, 0) if and only if r1r2r3 = 0.

This implies that R is weak right nil-symmetric if and only if the Dorroh
extension D is weak right nil-symmetric. �

The symmetric ring property does not go up to polynomial rings by [11,
Example 3.1]. So one may ask whether the polynomial rings over weak right nil-
symmetric rings are weak right nil-symmetric. However the answer is negative
by the following.
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Example 4.3. We use the ring and apply the argument in [11, Example 3.1]
and Example 3.8. Let R be the symmetric (hence weak nil-symmetric) ring in
Example 3.8. Note that

N(R) = N∗(R) = Z2〈a0, a1, a2, b0, b1, b2, c〉,

i.e., R/N∗(R) ∼= Z2 is a reduced ring, where Z2〈a0, a1, a2, b0, b1, b2, c〉 means
the set of all elements in A of zero constants. It then follows from this that

N(R)[x] = Z2〈a0, a1, a2, b0, b1, b2, c〉[x] = N(R[x]) = N∗(R[x])

and
R

N∗(R)
[x] ∼=

R[x]

N∗(R[x])
∼= Z2.

Now we take

f(x) = a0 + a1x+ a2x
2, g(x) = b0c+ b1cx+ b2cx

2 and h(x) = c

in R[x]. Then f(x), g(x), h(x) ∈ N(R[x]) and f(x)g(x)h(x) = (a0 + a1x +
a2x

2)(b0 + b1x+ b2x
2)c = 0. But

f(x)h(x)g(x) = (a0 + a1x+ a2x
2)c(b0 + b1x+ b2x

2) 6= 0,

since a0cb1 + a1cb0 /∈ I. Thus R[x] is not weak right nil-symmetric.

Now we study some conditions under which polynomial rings may be weak
right nil-symmetric.

Recall that a ring R is called Armendariz [20] if whenever any polynomials

f(x) =
m
∑

i=0

aix
i, g(x) =

n
∑

j=0

bjx
j ∈ R[x] satisfy f(x)g(x) = 0, aibj = 0 for

all i, j. Reduced rings are Armendariz by [4, Lemma 1]. Armendariz rings
are abelian by the proof of [1, Theorem 6] or [13, Corollary 8]. Armendariz
rings and weak right nil-symmetric rings are independent of each other by the
following example.

Example 4.4. (1) Let K be a field and A = K〈a, b〉 be the free algebra
generated by the noncommuting indeterminates a, b over K. Let I be the ideal
of A generated by a4 and set R = A/I. Then R is Armendariz by [3, Example
4.8]. We have ā, āb̄ā3 ∈ N(R) and ā(āb̄ā3)ā = 0, but āā(āb̄ā3) 6= 0. So R is not
weak right nil-symmetric.

(2) U2(R), over a reduced ring R, is a weak nil-symmetric ring by Corollary
3.3. But this is non-abelian, so not Armendariz.

A ring R is called (von Neumann) regular if for each a ∈ R there exists b ∈ R
such that a = aba.

Proposition 4.5. For a regular ring R the following conditions are equivalent:
(1) R is Armendariz.

(2) R is reduced.

(3) R is symmetric.

(4) R is semicommutative.
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(5) R is abelian.

(6) R is right (left) nil-symmetric.

(7) R is nil-semicommutative.

(8) R is weak right (left) nil-symmetric.

Proof. A regular ring R is Armendariz if and only if R is abelian if and only if R
is reduced if and only if R is nil-semicommutative by help of [9, Theorem 3.2],
[13, Corollary 8] and [18, Proposition 2.18]. (3)⇒(6) is clear and (6)⇒(2) comes
from[18, Proposition 2.18]. So we show that (8)⇒(5). Let R be weak right
nil-symmetric and assume on the contrary that there exist e2 = e, r ∈ R with
er−re 6= 0. Then er(1−e) 6= 0 or (1−e)re 6= 0. Say a = er(1−e) 6= 0. Since R
is regular, there exists b ∈ R with aba = a. Note that b = (1− e)be, a2 = 0 and
b2 = 0. Then a2b = 0 but aba = a 6= 0 for a, b ∈ N(R), contradicting that R is
weak right nil-symmetric. The computation for the case of a = (1 − e)re 6= 0
is similar. The proof of the weak left nil-symmetric case is also similar. �

On may raises two questions withe respect to Theorem 2.4, Proposition 4.1
and Proposition 4.5. But the regular ring R = Matn(F ) for n ≥ 4 over a field F
with N∗(R) = N∗(R) is directly finite but it is neither weak left nil-symmetric
nor weak right nil-symmetric by Example 3.6.

An element u of a ring R is right regular if ur = 0 implies r = 0 for r ∈ R.
Similarly, left regular elements can be defined. An element is regular if it is both

left and right regular (i.e., not a zero divisor). Recall that R ∼=
R[x]

R[x](x−a)R[x]

for a central regular element a in R.

Proposition 4.6. (1) If R is an Armendariz ring, then R is weak right nil-

symmetric if and only if R[x] is weak right nil-symmetric.

(2) For a ring R, assume that the center C(R) of R contains infinitely many

regular elements. Then R is weak right nil-symmetric if and only if R[x] is
weak right nil-symmetric.

Proof. Each proof is enough to show that R[x] is weak right nil-symmetric
when R is weak right nil-symmetric, by Proposition 3.2(2).

(1) Assume that R is Armendariz and weak right nil-symmetric. Let

f(x)g(x) = 0 for f(x) =

m
∑

i=0

aix
i, g(x) =

n
∑

j=0

ajx
j , h(x) =

k
∑

l=0

clx
l ∈ N(R[x]).

Then f(x), g(x), h(x) ∈ N(R)[x] because N(R[x]) = N(R)[x] by [3, Corollary
5.2]. Since R is Armendariz, aibjcl = 0 for all i, j and l. This implies that
aiclbj = 0 for all i, j and l since R is weak right nil-symmetric. This yields
f(x)h(x)g(x) = 0, proving that R[x] is weak right nil-symmetric.

(2) Let R be weak right nil-symmetric. By assumption, C(R) contains infin-
itely many regular elements, {ai | i ∈ I} say. Then

⋂

i∈I R[x](x − ai)R[x] = 0,
entailing that R[x] is a subdirect product of infinitely many copies of R. Thus
R[x] is weak right nil-symmetric by Proposition 3.2(4). �
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The Laurent polynomial ring with an indeterminate x over a ring R consists

of all formal sums
n
∑

i=k

mix
i with obvious addition and multiplication, where

mi ∈ R and k, n are (possibly negative) integers, we denote it by R[x;x−1].

Proposition 4.7. Let R be a ring. Then we have the following results.

(1) Let M be a multiplicatively closed subset of R consisting of central regular

elements. Then R is weak right nil-symmetric if and only if M−1R is weak right

nil-symmetric.

(2) R[x] is weak right nil-symmetric if and only if R[x;x−1] is weak right

nil-symmetric.

Proof. (1) It comes from the fact of N(M−1R) = M−1N(R).
(2) Letting M = {1, x, x2, . . .}, M is clearly a multiplicatively closed subset

of central regular elements in R[x] such that R[x;x−1] = M−1R[x]. The proof
is completed by (1). �

A multiplicatively closed subset S of a ring R is said to satisfy the right Ore

condition if for each a ∈ R and b ∈ S, there exist a1 ∈ R and b1 ∈ S such that
ab1 = ba1. It is shown by [17, Theorem 2.1.12] that S satisfies the right Ore
condition and S consists of regular elements if and only if the right quotient
ring of R with respect to S exists.

Theorem 4.8. Let S be a multiplicatively closed subset of a ring R, and

suppose that S satisfies the right Ore condition and S consists of regular el-

ements. Assume that Q is a nil-semicommutative ring. Then R is weak right

nil-symmetric if and only if so is the right quotient ring Q of R with respect to

S.

Proof. Let R be a weak right nil-symmetric ring. It suffices to show that the
right quotient ring Q of R is weak right nil-symmetric by Proposition 3.2(2).
We will freely use the assumption that Q is nil-semicommutative, and the fact
that N(Q) = N∗(Q) in [18, Theorem 2.5]. Suppose that α = au−1, β =
bv−1, γ = cw−1 ∈ N(Q) and αβγ = 0. Set I, J and K be the generated ideals
of Q by α, β and γ, respectively. Then I, J and K are nil so that a = αu ∈ I,
b = βv ∈ J and c = γw ∈ K, entailing a, b, c ∈ N(R). Since S satisfies the
right Ore condition, u−1b = b1u

−1
1 and bu1 = ub1 for some b1 ∈ R and u1 ∈ S.

Here b1 ∈ N(R) since bu1 = ub1 ∈ J and b1 = u−1(bu1) ∈ J . Then 0 = αβγ =
au−1bv−1cw−1 = ab1u

−1
1 v−1cw−1. Similarly, there exist c1 ∈ R and v1 ∈ S

such that cv1 = vc1 and v−1c = c1v
−1
1 . Here, c1 ∈ N(R) since cv1 = vc1 ∈ K

and c1 = v−1(cv1) ∈ K. Then 0 = αβγ = ab1u
−1
1 v−1cw−1 = ab1u

−1
1 c1v

−1
1 w−1.

Also, there exist c2 ∈ R and u2 ∈ S such that c1u2 = u1c2 and u−1
1 c1 = c2u

−1
2 .

Moreover, c2 ∈ N(R) since c1u2 = u1c2 ∈ K and c2 = u−1
1 (u1c2) ∈ K. Hence,

0 = αβγ = ab1u
−1
1 c1v

−1
1 w−1 = ab1c2u

−1
2 v−1

1 w−1 and so ab1c2 = 0. Then

0 = ab1c2 = aub1c2 = abu1c2 = abc1u2
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and
0 = abc1 = abvc1 = abcv1.

Hence we have abc = 0, and so acb = 0 since R is weak right nil-symmetric.
There exist c3, b3, b4 ∈ R and u3, w3, u4 ∈ S such that cu3 = uc3, bw3 = wb3
and b3u4 = u3b4, where c3, b3, b4 ∈ N(R) by the same method as above. We
will freely use R being weak right nil-symmetric. Then

0 = acb = acu3b = a(uc3)b = ab(uc3) = ac3(bu).

So 0 = ac3b = ac3bw3 = a(c3w)b3 since bw3 = wb3, and thus 0 = ab3(c3w)b3.
Then 0 = ab3c3 = ac3b3. By the similar computation to above,

0 = ac3b3 = ac3(b3u4) = ac3(u3b4)

and 0 = a(c3u3)b4 = ab4(c3u3). Thus we have ab4c3 = 0 and so ac3b4 = 0.
Therefore

αγβ = au−1cw−1bv−1 = ac3u
−1
3 w−1bv−1

= ac3u
−1
3 b3w

−1
3 v−1 = ac3b4u

−1
4 w−1

3 v−1 = 0,

showing that Q is weak right nil-symmetric. �
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