• 제목/요약/키워드: Mathematical knowledge for teaching

Search Result 259, Processing Time 0.026 seconds

Pre-service teachers' motivation in group activities for developing knowledge for teaching and practical competency: The case of the task value (교수 지식과 실천적 역량을 위한 그룹 활동에서 예비교사들의 동기: 과제 가치 사례)

  • Choi, Song-Hee;Kim, Dong-Joong
    • The Mathematical Education
    • /
    • v.60 no.3
    • /
    • pp.341-362
    • /
    • 2021
  • The purpose of this study is to explore the qualitative characteristics of pre-service teachers' motivation while they are participating in group activities for developing mathematical essay assessment problem and revising it. For this purpose, we analyzed individual factors about group learning activities as well as contextual factors about practical competency (in developing and revising mathematical essay assessment problem through collecting data of student responses to the problem). As results of data analyses, autonomy, among individual factors regarding group learning activities, was one of the main characteristics in attainment value, utility value, and intrinsic value, whereas task, authority, and grouping, among contextual factors regarding practical competency, appeared to have a positive impact on task value. These results suggest how to think of specific ideas and articulate them in designing a curriculum to develop student-evaluation expertise for pre-service teachers.

An Analysis of Types of Errors Found in the Proofs for Geometric Problems - Based on Middle School Course (중학교 기하 증명의 서술에서 나타나는 오류의 유형 분석)

  • Hwang, Jae-Woo;Boo, Deok Hoon
    • The Mathematical Education
    • /
    • v.54 no.1
    • /
    • pp.83-98
    • /
    • 2015
  • By analysing the examination papers for geometry, we classified the errors occured in the proofs for geometric problems into 5 main types - logical invalidity, lack of inferential ability or knowledge, ambiguity on communication, incorrect description, and misunderstanding the question - and each types were classified into 2 or 5 subtypes. Based on the types of errors, answers of each problem was analysed in detail. The errors were classified, causes were described, and teaching plans to prevent the error were suggested case by case. To improve the students' ability to express the proof of geometric problems, followings are needed on school education. First, proof learning should be customized for each types of errors in school mathematics. Second, logical thinking process must be emphasized in the class of mathematics. Third, to prevent and correct the errors found in the proofs for geometric problems, further research on the types of such errors are needed.

Values in Mathematics Education: Its Conative Nature, and How It Can Be Developed

  • Seah, Wee Tiong
    • Research in Mathematical Education
    • /
    • v.22 no.2
    • /
    • pp.99-121
    • /
    • 2019
  • This article looks back and also looks forward at the values aspect of school mathematics teaching and learning. Looking back, it draws on existing academic knowledge to explain why the values construct has been regarded in recent writings as a conative variable, that is, associated with willingness and motivation. The discussion highlights the tripartite model of the human mind which was first conceptualised in the eighteenth century, emphasising the intertwined and mutually enabling processes of cognition, affect, and conation. The article also discusses what we already know about the nature of values, which suggests that values are both consistent and malleable. The trend in mathematics educational research into values over the last three decades or so is outlined. These allow for an updated definition of values in mathematics education to be offered in this article. Considering the categories of values that might be found in mathematics classrooms, an argument is also made for more attention to be paid to general educational values. After all, the potential of the values construct in mathematics education research extends beyond student understanding of and performance in mathematics, to realising an ethical mathematics education which is important for thriveability in the Fourth Industrial Revolution. Looking ahead, then, this article outlines a 4-step values development approach for implementation in the classroom, involving Justifying, Essaying, Declaring, and Identifying. With an acronym of JEDI, this novel approach has been informed by the theories of 'saying is believing', self-persuasion, insufficient justification, and abstract construals.

Analysis on the Principles for Teaching Algebra Revealed in Clairaut's (Clairaut의 <대수학 원론>에 나타난 대수 지도 원리에 대한 분석)

  • Chang, Hye-Won
    • Journal of Educational Research in Mathematics
    • /
    • v.17 no.3
    • /
    • pp.253-270
    • /
    • 2007
  • by A.C. Clairaut was written based on the historico-genetic principle such as his . In this paper, by analyzing his we can induce six principles that Clairaut adopted to teach algebra: necessity and curiosity as a motive of studying algebra, harmony of discovery and proof, complementarity of generalization and specialization, connection of knowledge to be learned with already known facts, semantic approaches to procedural knowledge of mathematics, reversible approach. These can be considered as strategies for teaching algebra accorded with beginner's mind. Some of them correspond with characteristics of , but the others are unique in the domain of algebra. And by comparing Clairaut's approaches with school algebra, we discuss about some mathematical subjects: setting equations in relation to problem situations, operations and signs of letters, rule of signs in multiplication, solving quadratic equations, and general relationship between roots and coefficients of equations.

  • PDF

The teaching-learning practices all learners can participate in mathematics instruction. (모든 학습자가 수학수업에 참여하는 교수.학습 행위)

  • Kim, Jin-Ho
    • Education of Primary School Mathematics
    • /
    • v.13 no.1
    • /
    • pp.13-24
    • /
    • 2010
  • Mathematics educators oriented to reform-based curricular have asserted that mathematics teachers should lead instructions where all students in their classrooms are able to participated. In this paper, some practices for them to implement it are discussed. Before explaining them, some discussions are made about students ability to construct knowledge. One of them is that teachers should know different learners construct different understandings because of their differences of prior knowledge and reasoning ability. Also, it was discussed that teachers consider classroom environments, assigning children's sitting and tasks in the light of learning. The reason to state them is that perspectives of them should be changed. Finally, "Teacher's careful listening to learners' responses", "Why do think in that way?, How do you know?, What is it meant?", "accepting ideas from all learners", "no supporting a particular idea", "utilizing waiting time", and "teacher's responses to learner's errors and mistakes" are discussed as practices for letting all learners be participated in the mathematics instruction.

A Study on the Statistical Probability Instruction through Computer Simulation (컴퓨터 시뮬레이션을 통한 통계적 확률 지도에 대한 연구)

  • Shin Bo-Mi;Lee Kyung-Hwa
    • Journal of Educational Research in Mathematics
    • /
    • v.16 no.2
    • /
    • pp.139-156
    • /
    • 2006
  • The concept of probability in current school mathematics has been dealt with in the classic viewpoint (mathematical probability) and part of the frequency viewpoint and axiomatic viewpoint have been introduced. However, since the exact understanding of the probability concepts is not possible only with the classic viewpoint, we need to research further on methods to complement classic viewpoint and emphasize various aspects of probability concepts (Lee, Kyung Hwa, 1996). Therefore, this study is to find out optimal computer simulation plans in teaching statistical probability. For the purpose, it examines how the nature of mathematical knowledge may be changed when statistical probability is taught with a use of computer simulation based on the Theory of Didactical Situation presented by Brousseau(1997). Next, it identifies how probability curriculum should be reconstituted for introducing statistical probability through computer simulation. Finally, it develops specific teaching materials that introduce statistical probability using computer simulation based on the results obtained.

  • PDF

Guidelines for big data projects in artificial intelligence mathematics education (인공지능 수학 교육을 위한 빅데이터 프로젝트 과제 가이드라인)

  • Lee, Junghwa;Han, Chaereen;Lim, Woong
    • The Mathematical Education
    • /
    • v.62 no.2
    • /
    • pp.289-302
    • /
    • 2023
  • In today's digital information society, student knowledge and skills to analyze big data and make informed decisions have become an important goal of school mathematics. Integrating big data statistical projects with digital technologies in high school <Artificial Intelligence> mathematics courses has the potential to provide students with a learning experience of high impact that can develop these essential skills. This paper proposes a set of guidelines for designing effective big data statistical project-based tasks and evaluates the tasks in the artificial intelligence mathematics textbook against these criteria. The proposed guidelines recommend that projects should: (1) align knowledge and skills with the national school mathematics curriculum; (2) use preprocessed massive datasets; (3) employ data scientists' problem-solving methods; (4) encourage decision-making; (5) leverage technological tools; and (6) promote collaborative learning. The findings indicate that few textbooks fully align with these guidelines, with most failing to incorporate elements corresponding to Guideline 2 in their project tasks. In addition, most tasks in the textbooks overlook or omit data preprocessing, either by using smaller datasets or by using big data without any form of preprocessing. This can potentially result in misconceptions among students regarding the nature of big data. Furthermore, this paper discusses the relevant mathematical knowledge and skills necessary for artificial intelligence, as well as the potential benefits and pedagogical considerations associated with integrating technology into big data tasks. This research sheds light on teaching mathematical concepts with machine learning algorithms and the effective use of technology tools in big data education.

Study and International Comparison on the Meaning of 'Core Ideas' in Mathematics Curriculum (수학 교육과정의 '핵심 개념' 의미 고찰 및 국제 비교)

  • Lee, Hwa Young
    • School Mathematics
    • /
    • v.19 no.3
    • /
    • pp.495-511
    • /
    • 2017
  • The purpose of this study is to research the meaning of core ideas and to compare the core ideas in mathematics curriculum of each country. I derived that the core ideas were approached and presented in curriculums of South Korea, The United States, Canada, Australia, New Zealand, Singapore as several perspectives; the main domains of mathematics contents which should be taught; the basis of the core principles between of mathematical contents; the focuses for teaching and learning in school mathematics. Finally, I discussed the further research direction on the contents of core ideas and the methods of presenting it to teach meaningfully the core mathematical contents to students who will live in the future.

Preservice teachers' understanding of fraction multiplication through problem posing and solving in Korea and the United States (문제제기 및 해결을 통한 한국과 미국 예비교사의 분수 곱셈 이해 탐색)

  • Yeo, Sheunghyun;Lee, Jiyoung
    • The Mathematical Education
    • /
    • v.61 no.1
    • /
    • pp.157-178
    • /
    • 2022
  • Mathematics teachers' content knowledge is an important asset for effective teaching. To enhance this asset, teacher's knowledge is required to be diagnosed and developed. In this study, we employed problem-posing and problem-solving tasks to diagnose preservice teachers' understanding of fraction multiplication. We recruited 41 elementary preservice teachers who were taking elementary mathematics methods courses in Korea and the United States and gave the tasks in their final exam. The collected data was analyzed in terms of interpreting, understanding, model, and representing of fraction multiplication. The results of the study show that preservice teachers tended to interpret (fraction)×(fraction) more correctly than (whole number)×(fraction). Especially, all US preservice teachers reversed the meanings of the fraction multiplier as well as the whole number multiplicand. In addition, preservice teachers frequently used 'part of part' for posing problems and solving posed problems for (fraction)×(fraction) problems. While preservice teachers preferred to a area model to solve (fraction)×(fraction) problems, many Korean preservice teachers selected a length model for (whole number)×(fraction). Lastly, preservice teachers showed their ability to make a conceptual connection between their models and the process of fraction multiplication. This study provided specific implications for preservice teacher education in relation to the meaning of fraction multiplication, visual representations, and the purposes of using representations.

A Case Study on the Relationship between Indefinite Integral and Definite Integral according to the AiC Perspective (AiC 관점에 따른 부정적분과 정적분 관계 학습사례 연구)

  • Park, Minkyu;Lee, Kyeong-Hwa
    • Communications of Mathematical Education
    • /
    • v.36 no.1
    • /
    • pp.39-57
    • /
    • 2022
  • This study aims to design an integral instruction method that follows the Abstraction in Context (AiC) framework proposed by Hershkowitz, Schwarz, and Dreyfus to help students in acquiring in-depth understanding of the relationship between indefinite integrals and definite integrals and to analyze how the students' understanding improved as a result. To this end, we implemented lessons according to the integral instruction method designed for eight 11th grade students in a science high school. We recorded and analyzed data from graded student worksheets and transcripts of classroom recordings. Results show that students comprehend three knowledge elements regarding relationship between indefinite integral and definite integral: the instantaneous rate of change of accumulation function, the calculation of a definite integral through an indefinite integral, and The determination of indefinite integral by the accumulation function. The findings suggest that the AiC framework is useful for designing didactical activities for conceptual learning, and the accumulation function can serve as a basis for teaching the three knowledge elements regarding relationship between indefinite integral and definite integral.