• Title/Summary/Keyword: Mathematical idea

Search Result 272, Processing Time 0.022 seconds

FAST UNIQUE DECODING OF PLANE AG CODES

  • Lee, Kwankyu
    • Honam Mathematical Journal
    • /
    • v.35 no.4
    • /
    • pp.793-808
    • /
    • 2013
  • An interpolation-based unique decoding algorithm of Algebraic Geometry codes was recently introduced. The algorithm iteratively computes the sent message through a majority voting procedure using the Gr$\ddot{o}$bner bases of interpolation modules. We now combine the main idea of the Guruswami-Sudan list decoding with the algorithm, and thus obtain a hybrid unique decoding algorithm of plane AG codes, significantly improving the decoding speed.

Generalized Intuitionistic Fuzzy Matrices

  • Park, Jin-Han;Park, Yong-Beom
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.351-354
    • /
    • 2004
  • Using the idea of generalized intuitionistic fuzzy set, we study the notion of generalized intuitionistic fuzzy matrices as a generalization of fuzzy matrices, We show that some properties of a square generalized intuitionistic fuzzy matrix such as reflexivity, transitivity and circularity are carried over to the adjoint generalized intuitionistic fuzzy matrix.

  • PDF

ENTROPY AND THE RANDOMNESS OF THE DIGITS OF PI

  • Geon Ho Choe;Dong Han Kim
    • Communications of the Korean Mathematical Society
    • /
    • v.15 no.4
    • /
    • pp.683-689
    • /
    • 2000
  • The convergence rate of the expectation of the logarithm of the first return time R(sub)n with block length n has been investigated for Bernoulli processes. This idea is applied to check the randomness of the digits of the decimal expansion of $\pi$, e and √2.

  • PDF

EFFICIENT MONTE CARLO ALGORITHM FOR PRICING BARRIER OPTIONS

  • Moon, Kyoung-Sook
    • Communications of the Korean Mathematical Society
    • /
    • v.23 no.2
    • /
    • pp.285-294
    • /
    • 2008
  • A new Monte Carlo method is presented to compute the prices of barrier options on stocks. The key idea of the new method is to use an exit probability and uniformly distributed random numbers in order to efficiently estimate the first hitting time of barriers. It is numerically shown that the first hitting time error of the new Monte Carlo method decreases much faster than that of standard Monte Carlo methods.

AN EXAMPLE OF LARGE GROUPS

  • Cevik, Ahmet Sinan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.1
    • /
    • pp.195-206
    • /
    • 2020
  • The fundamental idea of this article is to present an effective way to obtain the large groups in terms of the split extension obtained by a finite cyclic group and a free abelian group rank 2. The proof of the main result on largeness property of this specific split extension groups will be given by using the connection of large groups with the groups having deficiency one presentations.

The Characterization of Optimal Control Using Delay Differential Operator

  • Shim, Jaedong
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.7 no.1
    • /
    • pp.123-139
    • /
    • 1994
  • In this paper we are concerned with optimal control problems whose costs are quadratic and whose states are governed by linear delay differential equations and general boundary conditions. The basic new idea of this paper is to introduce a new class of linear operators in such a way that the state equation subject to a starting function can be viewed as an inhomogeneous boundary value problem in the new linear operator equation. In this way we avoid the usual semigroup theory treatment to the problem and use only linear operator theory.

  • PDF

ON INTERVAL VALUED (${\alpha}$, ${\beta}$)-FUZZY IDEA OF HEMIRINGS

  • Shabir, Muhammad;Mahmood, Tahir
    • East Asian mathematical journal
    • /
    • v.27 no.3
    • /
    • pp.349-372
    • /
    • 2011
  • In this paper we define interval valued (${\in}$, ${\in}{\vee}q$)-fuzzy hquasi-ideals, interval valued (${\in}$, ${\in}{\vee}q$)-fuzzy h-bi-ideals, interval valued ($\bar{\in}$, $\bar{\in}{\vee}\bar{q}$)-fuzzy h-ideals, interval valued ($\bar{\in}$, $\bar{\in}{\vee}\bar{q}$)-fuzzy h-quasi-ideals, interval valued ($\bar{\in}$, $\bar{\in}{\vee}\bar{q}$)-fuzzy h-bi-ideals and characterize different classes of hemirings by the properties of these ideals.

Construction of Further Education Curricula System for Math Teachers of Senior High Schools

  • He Xiaoya
    • Research in Mathematical Education
    • /
    • v.9 no.2 s.22
    • /
    • pp.135-151
    • /
    • 2005
  • Further education for teachers is required for reforms of elementary education curricula and their career development. Principles of relevance, selectivity and hierarchy should be followed in the construction of further education curricula system for math teachers of senior high school. The following curricula should be included in the system: A. moral elevation and idea renewal curricula; B. theoretic curricula on math education; C. curricula on math education design; D. curricula on math education research; E. curricula on modern educational technology; F. curricula on knowledge renewal and extension.

  • PDF

DEPTH FOR TRIANGULATED CATEGORIES

  • Liu, Yanping;Liu, Zhongkui;Yang, Xiaoyan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.2
    • /
    • pp.551-559
    • /
    • 2016
  • Recently a construction of local cohomology functors for compactly generated triangulated categories admitting small coproducts is introduced and studied by Benson, Iyengar, Krause, Asadollahi and their coauthors. Following their idea, we introduce the depth of objects in such triangulated categories and get that when (R, m) is a graded-commutative Noetherian local ring, the depth of every cohomologically bounded and cohomologically finite object is not larger than its dimension.