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EFFICIENT MONTE CARLO ALGORITHM FOR PRICING
BARRIER OPTIONS

KyounGg-500K MooN

ABSTRACT. A new Monte Carlo method is presented to compute the
prices of barrier options on stocks. The key idea of the new method
is to use an exit probability and uniformly distributed random numbers
in order to efficiently estimate the first hitting time of barriers. It is nu-
merically shown that the first hitting time error of the new Monte Carlo
method decreases much faster than that of standard Monte Carlo meth-
ods.

1. Introduction

A new Monte Carlo method is proposed in order to efficiently compute the
prices of barrier stock options based on an exit probability.

European vanilla option is a contract giving the option holder the right to
buy or sell one unit of underlying assets at a prescribed price, known as exercise
price K, at a prescribed time, known as expiration date 1". Barrier options are
similar to standard vanilla options except that the option is knocked out or in
if the underlying asset price hits the barrier price, B, before expiration date.
Since 1967, barrier options have been traded in the over-the-counter (OTC)
market and nowadays are the most popular class of exotic options. Therefore
it is quite important to develope accurate and efficient methods to evaluate
barrier option prices in financial derivative markets.

The evolution of the financial asset price can be written as a stochastic pro-
cess {St}iejo,r) defined on a suitable probability space (€2, F,P). We consider
the setting of the classical Black-Scholes option pricing model: the price S;
of the underlying asset is described by a geometric Brownian motion with a
constant expected rate of return p > 0 and a constant volatility o > 0 of the
asset price, i.e.,

(1) dSt = ‘U.Stdt—!"O'Stth,

where W; is a standard Brownian motion process, see [6], [14].
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To evaluate barrier option prices, there have been two major directions. The
first approach is to solve the Black-Scholes partial differential equation (PDE),
see [2], [11]. Merton [11] provided the first analytical formula for a down-and-
out call option which was extended for all 8 types of barriers by Reiner and
Rubinstein [13], see also Haug [5] for a generalization. However, it is very
difficult to price barrier options based on more than two underlying assets.
Therefore one should rely on numerical approximations. Instead of solving
Black-Scholes PDE, the second approach is to compute an expected value of
the discounted terminal payoff under a risk-neutral measure Q, i.e., 4 = 7 in
(1) where r > 0 is a constant riskless interest rate. The barrier option price
V(s,t) at a present time ¢ can be computed by

(2) V(s,t) = EQA(S,, 7)|S; = s],

where A(S;,7) is a discounted payoff function and 7 is the first hitting time
of the given barrier price by the underlying asset process S;. For example, for
up-and-out call barrier options the random variable 7 is defined by

r=inf{u>1t:85, > B},
and have the payoff

~r(T—t) (Sr — K,0) if Sy <B,Vt<T, ie,7=T
. € max T ’ 1 t ) —_ ? 1.€ ? T
(3) A(S'ra T) - { e-—?’(T—t)R at hit T < T’

where K is a given exercise price at expiration date T', B is a barrier price,
and R is a prescribed cash rebate. To approximate the option price in (2), one
may apply either lattice methods or Monte Carlo methods. Since we are more
interested in multi-asset cases, we choose Monte Carlo methods.

The Monte Carlo method is very popular and robust numerical method,
since it is not only easily extended to multiple underlying assets but also sto-
chastic and simple to coding. On the other hand, one of main drawback of
the Monte Carlo method is a slow convergence. The statistical error of the
Monte Carlo method is of order O(1/v/M) with M simulations. In particular,
for continuously monitored barrier options, the hitting time error is of order
O(1/+v/N) with N time steps, see [4], while the European vanilla options have
no time discretization error.

The reason why the continuously monitored barrier option gives such a slow
convergence for the time error is that the exact path of the underlying asset may
hit the barrier between the discrete computational nodes. In this case, the exact
value at time t is e "("~Y) R, where 7 < T is the hitting time or the first exit
time, on the other hand the approximate option price is E?[A(ST,T)|S; = 3],
which may be very different to the exact price. There have been different ideas
to reduce this first hitting time error. Dzougoutov et. al. in [3] used adaptive
mesh near the barrier to reduce this error and Atiya and Metwally in [12] used
a Brownian bridge idea for jump diffusion process. In order to efficiently reduce
this hitting time error near the barrier price, inspired by Mannella [10], at each



EFFICIENT MONTE CARLO ALGORITHM FOR PRICING BARRIER OPTIONS 287

finite time step, we suggest to use an uniformly distributed random variable
and a conditional exit probability to correctly check whether the continuous
underlying asset price hits the barrier or not. Numerical results show that
the new Monte Carlo method converges much faster than the standard Monte
Carlo method. For instance, in Section 3, for two-asset barrier option problem,
in order to get the same level of accuracy, the standard Monte Carlo method
needs 32 times more computational work than the new method, see Fig. 3.
This idea of using exit probability for stopped diffusion is well known in physics
community, see {8], [10].

The outline of the paper is as follows. In Section 2 we introduce the new
Monte Carlo method based on the idea of using uniformly distributed random
variable and the conditional exit probability. In Section 3 we present numeri-
cal results for barrier options with one or two underlying assets and compare
the accuracy and efficiency between the standard and the new Monte Carlo
methods. We finally summarize the conclusions in Section 4.

2. Efficient Monte Carlo algorithm

Let us assume that the evolution of the underlying asset price follows the
geometric Brownian motion (1). From Ito’s formula, the analytic solution
satisfies

(4) Sy = Spelr—zo )it We

where r is a constant interest rate and o is a constant volatility and W; is
a standard Brownian motion. Using the Monte Carlo method, the expected
value of the discounted terminal payoff is approximated by a sample average
of M simulations
M

(5) Vs, t) = ER[A(S,,T)|S; = 5] = V(s,t) = L ZA(S; T3 W;)

: M p 1y % )
where 7 is an approximation of the hitting time 7.

Then the global error can be split into the first hitting time error and sta-
tistical error,

o~

(6) £ :=1V(s,t) —V(s,t)] = (E%A(S,,7)—A(S:,7)|S: = s])

M
- 1
+ | B¥A(S:, P} - 57 > A(Sz, Frw;))

71=1
(7) =: Epr+E&s.

From the central limit theorem, the statistical error, £s in (7), has the following
upper bound

bar
8 Egl < ¢ :
(8) Ibi_o\/ﬂ
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where by is a sample standard deviation of the function values A(S;,7) and
cp is a positive constant related to confidence interval and M is the number
of samples. For instance, cg = 1.96 for 95 % of confidence interval. On the
other hand, the first hitting time error, £r in (7), is approximated using an
exit probability given the asset prices at each time step.

Let us first discretize the time interval [0,7] into N uniform subinterval
0=1p <t1 <--- <ty =71T. Then let us compute S,11 :=S;,., at each time
stepforn=0,...,N -1 by

(9) Sn+1 — Sne(r—%o'z)Atn-l-aAWn.

Here At,, and AW, denote the time increments At, = t,.1 — t, and the
Wiener increments AW,, = W, ., —W;, forn =0,...,N —1. Then for the
up-and-out barrier case, the approximation of the first hitting time 7 can be
defined by

7 =inf{t,,n=1,...,N: S, > B},

with the given barrier price B.

The idea is to use an exit probability at each time step. Let P, denote the
probability that a process X exits a domain D at t € [tk,tr+1] given the values
X and Xiy1 are in D. In one dimensional half interval case, D = (—o0, B),
for a constant B, the probability P has a simple expression using the law of
Brownian bridge, see [9]

Pk:IP[ max Xt2B|Xk=xl,Xk+l =.’IZ2}

tE[tk,tk+1]

- on (25505,

where B(z1) is the diffusion part of Xy with z; < B and zo < B. For more
general domain in higher dimension, the probability can be approximated by
an asymptotic expansion in Aty, see [1].

Let us consider the up-and-out barrier option case. At each time interval t €
[ty tnt1], we compute S, and S, +1 by (9). Though S, and S,,+1 do not hit the
barrier, i.e., S, < B and S,41 < B, the continuous path S;,t € [t,,t,+1] may
hit the barrier at some time 7 € (¢,,t,+1). To approximate this hitting event,
we generate an uniformly distributed random variable u,, and compare with
the exit probability P, in (10). If P,, < u,, then we accept that the continuous
path S; does not hit the barrier during this time interval ¢t € [t,,t,41], since
the exit probability is very small, i.e., the hitting event is rare to occur. On the
other hand, if P,, > u,, then the probability that the continuous path S; hits the
barrier is high therefore we regard that S; > B at 7 € (t,,,t,.1). Therefore we
have the rebate R and start the next sample path, i.e., the value of the barrier
option of this path is V(Sp,0) = Re™"". In this case, as an approximation of
the first hitting time 7, we may choose the midpoint 7 = (¢, + t,+1)/2.

(10)
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Let us summarize the standard and the new Monte Carlo methods to com-
pute the price of the up-and-out barrier call option. Without loss of generality
let us assume that the cash rebate is zero, i.e., R = 0. The following algorithms
are readily extended to other types of barrier options with nonzero cash rebate.
Here N(0,1) and U(0, 1) denote that the random variables have the standard
normal distribution with mean 0 and variance 1 and a uniform distribution
over (0,1), respectively.

Standard Monte Carlo Method
for j=1,..., M
forn=0,1,...,N =1
generate a A/(0,1) sample z,

set S,.1 = S, elr 20 )At+oVAtz,
end
if max S, < Bthen V; =e " max(Sy — K, 0)
0<n<N J

otherwise V; = 0

end

Af
~ 1
set V = " ; V;

New Monte Carlo Method
forg=1,.... M
forn=0,1,..., N -1
generate a N'(0, 1) sample z,

r— 12 VvV iAlz
set Spy1 = S,el7 27 )ATTIVatn
_2 lI-;"_HTI}(};}Sn—}‘])
set P,y =e o2 Sh A
end

generate U4(0,1) samples u,,n=1,...,N

if (S, < Band P, <u,, 1 <¥n < N) then V; = e ™! max(St — K, 0)
otherwise V; =0

end

3. Numerical experiments

It is numerically shown that the approximate error of the new method con-
verges much faster than that of the standard Monte Carlo method. Let us
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compare the approximate errors £ in (6) for barrier options with one or two
underlying assets.

3.1. One-asset double barrier options

Let us consider an up-and-out-down-and-out barrier call option, namely the
option is knocked out if the underlying asset price touches either the lower
barrier price L or the upper barrier price U before the expiration date. The
payoff at expiry is

A =max(St — K,0) if L < S; < U before T else 0.

We use the parameters that the present asset price is Sp = 100, the exercise
price K = 100, the barrier prices L = 70,U = 130, the riskless interest rate
r = (.1, the expiration date is 6 months, 7' = 0.5 and the volatility ¢ = 0.25.
Double barrier options can be computed using the Ikeda and Kunitomo formula
in [7]. The fair option price with the above parameters is V(100,0) = 4.0004.

Let us apply the algorithms given in Section 2. For the New Monte Carlo
Method, we compute two exit probabilities PV, PX for up and down barriers
respectively and check the criteria

generate U(0,1) samples u-,ut ,n=1,...,N

if ((L < ming<n<n Sn and maxo<n<ny Sn < U) and
(Pf <uk and PY <ul, 1 <Vn < N))

then V; = eI max(Sy — K, 0)

otherwise V; = 0.

Fig. 1 compares the computational errors, £ in (6), between the new and
the standard Monte Carlo methods for different numbers of time steps, N =
28 k = 3,...,7. As we can see from Fig. 1, the new Monte Carlo method
gives much smaller approximate errors than the standard Monte Carlo using
the same number of time steps. For instance, using NV = 2° time steps, the new
method gives the error £ = 0.0604, but the standard method gives £ = 0.1066
using N = 2!V time steps. In order to compare the hitting time errors correctly,
we use M = 107 samples and make the statistical error £5 = 0.0021 negligible
compared to the hitting time error.

Fig. 2 shows the comparison of the CPU times between the standard and
the new Monte Carlo methods using N = 2%,k =3,...,6 and M = 107. The
CPU times for the new Monte Carlo method take about three times more than
the standard method, because of the calculation of the probabilities and the
generation of the random numbers, u.,.

For different volatilities o = 0.15,0.25, 0.35 of the market, the new method
gives consistently more accurate approximations compared to the standard
case, see the Table 1.
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One—Asset Double Barrier Option
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FIGURE 1. One-asset double barrier option: Comparison of
the approximation errors between the standard and the new

Monte Carlo methods.
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FIGURE 2. One-asset double barrier option: Comparison of
the CPU times between the standard and the new Monte Carlo

methods.

3.2. Two-asset barrier options

Consider a two-asset up-and-out barrier call option problem, namely the
option is knocked out or becomes useless if the asset prices hit the barrier
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o Standard MC New MC

0.15 0.1745 0.0059
0.25 0.5528 0.0163
0.35 0.6199 0.0202

TABLE 1. One-asset double barrier option: Comparisons
of the computational errors for different volatilities ¢ =
0.15,0.25,0.35 with § = K = 100,L = 70,U = 130,r =
0.1,T = 0.5 using N = 2° time steps and M = 107 samples.

before expiration. One of the underlying assets, S determines how much the
option is in or out-of-the-money, and the other asset, S is linked to barrier
hits. The payoff at expiry is

A = max(SY(T) — K,0) if S%(t) < B before T else 0 at hit .

In this case, there exists an exact solution in [5] and we compare the approxi-
mate error £ in (6) between the standard and the new Monte Carlo methods.
We use the parameters that the present stock prices are S} = S2 = 100, the
exercise price K = 90, the barrier price B = 105, the riskless interest rate
r = (.08, the expiration date is 6 months, T' = 0.5 the volatility o; = 05 = 0.2,
and correlation between two assets p = —0.5. Here at each sample path, we
generate two independent A(0,1) random numbers z1, 22 and compute the
correlated Brownian motions by

W1 =V Atzl, W2 = pV AtZ1 -+ \/ 1 — pQVAtZQ.

The fair option value is V(100, 100,0) = 4.66791168. In order to compare the
hitting time error correctly, we use M = 107 samples and make the statistical
error £g = 0.0035 negligible compared to the time error.

The comparison of the convergence between the standard and the new Monte
Carlo methods is shown in Fig. 3. The number of time steps N = 2% k =
3,...,7 are used. As we can see from Fig. 3, the hitting time error of the new
method decreases much faster than that of the standard Monte Carlo method.
For instance, to get the hitting time error around &r = 0.45, the standard
Monte Carlo method needs N = 2° time steps, while the new method needs
N = 23 time steps, which is around 32 times less work.

4. Conclusions

A new Monte Carlo method has been proposed in order to correctly com-
pute the first hitting time of the barrier price by the underlying asset. The
approximate error of the new method converges much faster than that of the
standard Monte Carlo method. The future work will be devoted to extend this
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Two-Asset Barrier Option
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FIGURE 3. Two-asset barrier option: (Up) Comparison of the
values of options (Down) Comparison of the approximation
errors between the standard and the new Monte Carlo meth-

ods.

idea to more general diffusion problems and also theoretically study the rate
of convergence of the approximate errors.
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