• 제목/요약/키워드: Mathematical Modeling

검색결과 1,598건 처리시간 0.024초

비선형 점탄성 부싱모델의 회전방향모드에 대한 실험적 연구 (An Experimental Study of Nonlinear Viscoelastic Bushing Model for Torsional Mode)

  • 이성범;이성재;전성철;송동률;정재영;박찬석;이우현
    • Elastomers and Composites
    • /
    • 제43권1호
    • /
    • pp.25-30
    • /
    • 2008
  • 자동차 부싱은 차체로 전달되는 하중을 줄여주는 역할을 하는 자동차 현가장치의 주요 부품으로 바깥쪽 슬리브와 안쪽의 축 사이에서 가운데가 비어 있는 실린더의 형상을 가진다. 차축에 작용되는 힘과 모멘트에 대한 부싱의 상대변위 및 변형각도는 점탄성 성질을 나타내며, 부싱에서 힘과 모멘트와 이에 대한 변위와 변형각도의 관계는 다물체 동역학 시뮬레이션에 매우 중요하다. 본 연구는 자동차 부싱의 회전방향 모드에 대한 모멘트와 변형각도의 점탄성 관계를 변형각도에 의존하는 모멘트 완화함수를 통하여 부싱모델을 완성하였으며, 완성된 점탄성 부싱 모델은 회전방향 모드에 대한 실험값과 비교하여 검증하였다.

Seismic response of underwater fluid-conveying concrete pipes reinforced with SiO2 nanoparticles using DQ and Newmark methods

  • Maleki, Mostafa;Bidgoli, Mahmood Rabani
    • Computers and Concrete
    • /
    • 제21권6호
    • /
    • pp.717-726
    • /
    • 2018
  • Concrete pipelines are the most efficient and safe means for gas and oil transportation over a long distance. The use of nano materials and nono-engineering can be considered for enhancing concrete pipelines properties. the tests show that $SiO_2$ nanoparticles can improve the mechanical behavior of concrete. Moreover, severe hazard for pipelines is seismic ground motion. Over the years, scientists have attempted to understand pipe behavior against earthquake most frequently via numerical modeling and simulation. Therefore, in this paper, the dynamic response of underwater nanocomposite submerged pipeline conveying fluid is studied. The structure is subjected to the dynamic loads caused by earthquake and the governing equations of the system are derived using mathematical model via Classic shell theory and Hamilton's principle. Navier-Stokes equation is employed to calculate the force due to the fluid in the pipe. As well, the effect of external fluid is modeled with an external force. Mori-Tanaka approach is used to estimate the equivalent material properties of the nanocomposite. 1978 Tabas earthquake in Iran is considered for modelling seismic load. The dynamic displacement of the structure is extracted using differential quadrature method (DQM) and Newmark method. The effects of different parameters such as $SiO_2$ nanoparticles volume percent, boundary conditions, thickness to radius ratios, length to radius ratios, internal and external fluid pressure and earthquake intensity are discussed on the seismic response of the structure. From results obtained in this paper, it can be found that the dynamic response of the pipe is increased in the presence of internal and external fluid. Furthermore, the use of $SiO_2$ nanoparticles in concrete pipeline reduces the displacement of the structure during an earthquake.

분포형 물수지 모델(WetSpass-M)을 이용한 삽교천 상류 유역에서의 월별 지하수 함양량 산정 (Evaluation of Groundwater Recharge using a Distributed Water Balance Model (WetSpass-M model) for the Sapgyo-cheon Upstream Basin)

  • 안효원;하규철
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제26권6호
    • /
    • pp.47-64
    • /
    • 2021
  • In this study, the annual and monthly groundwater recharge for the Sapgyo-cheon upstream basin in Chungnam Province was evaluated by water balance analysis utilizing WetSpass-M model. The modeling input data such as topography, climate parameters, LAI (Leaf Area Index), land use, and soil characteristics were established using ArcGIS, QGIS, and Python programs. The results showed that the annual average groundwater recharge in 2001 - 2020 was 251 mm, while the monthly groundwater recharge significantly varied over time, fluctuating between 1 and 47 mm. The variation was high in summer, and relatively low in winter. Variation in groundwater recharge was the largest in July in which precipitation was heavily concentrated, and the variation was closely associated with several factors including the total amount of precipitation, the number of days of the precipitation, and the daily average precipitation. This suggests the extent of groundwater recharge is greatly influenced not only by quantity of precipitation but also the precipitation pattern. Since climate condition has a profound effect on the monthly groundwater recharge, evaluation of monthly groundwater recharge need to be carried out by considering both seasonal and regional variability for better groundwater usage and management. In addition, the mathematical tools for groundwater recharge analysis need to be improved for more accurate prediction of groundwater recharge.

Forecasting of the COVID-19 pandemic situation of Korea

  • Goo, Taewan;Apio, Catherine;Heo, Gyujin;Lee, Doeun;Lee, Jong Hyeok;Lim, Jisun;Han, Kyulhee;Park, Taesung
    • Genomics & Informatics
    • /
    • 제19권1호
    • /
    • pp.11.1-11.8
    • /
    • 2021
  • For the novel coronavirus disease 2019 (COVID-19), predictive modeling, in the literature, uses broadly susceptible exposed infected recoverd (SEIR)/SIR, agent-based, curve-fitting models. Governments and legislative bodies rely on insights from prediction models to suggest new policies and to assess the effectiveness of enforced policies. Therefore, access to accurate outbreak prediction models is essential to obtain insights into the likely spread and consequences of infectious diseases. The objective of this study is to predict the future COVID-19 situation of Korea. Here, we employed 5 models for this analysis; SEIR, local linear regression (LLR), negative binomial (NB) regression, segment Poisson, deep-learning based long short-term memory models (LSTM) and tree based gradient boosting machine (GBM). After prediction, model performance comparison was evelauated using relative mean squared errors (RMSE) for two sets of train (January 20, 2020-December 31, 2020 and January 20, 2020-January 31, 2021) and testing data (January 1, 2021-February 28, 2021 and February 1, 2021-February 28, 2021) . Except for segmented Poisson model, the other models predicted a decline in the daily confirmed cases in the country for the coming future. RMSE values' comparison showed that LLR, GBM, SEIR, NB, and LSTM respectively, performed well in the forecasting of the pandemic situation of the country. A good understanding of the epidemic dynamics would greatly enhance the control and prevention of COVID-19 and other infectious diseases. Therefore, with increasing daily confirmed cases since this year, these results could help in the pandemic response by informing decisions about planning, resource allocation, and decision concerning social distancing policies.

Analysis of critical fluid velocity and heat transfer in temperature-dependent nanocomposite pipes conveying nanofluid subjected to heat generation, conduction, convection and magnetic field

  • Fakhar, Mohammad Hosein;Fakhar, Ahmad;Tabatabaei, Hamidreza
    • Steel and Composite Structures
    • /
    • 제30권3호
    • /
    • pp.281-292
    • /
    • 2019
  • In this paper, analysis of critical fluid velocity and heat transfer in the nanocomposite pipes conveying nanofluid is presented. The pipe is reinforced by carbon nanotubes (CNTs) and the fluid is mixed by $AL_2O_3$ nanoparticles. The material properties of the nanocomposite pipe and nanofluid are considered temperature-dependent and the structure is subjected to magnetic field. The forces of fluid viscosity and turbulent pressure are obtained using momentum equations of fluid. Based on energy balance, the convection of inner and outer fluids, conduction of pipe and heat generation are considered. For mathematical modeling of the nanocomposite pipes, the first order shear deformation theory (FSDT) and energy method are used. Utilizing the Lagrange method, the coupled pipe-nanofluid motion equations are derived. Applying a semi-analytical method, the motion equations are solved for obtaining the critical fluid velocity and critical Reynolds and Nusselt numbers. The effects of CNTs volume percent, $AL_2O_3$ nanoparticles volume percent, length to radius ratio of the pipe and shell surface roughness were shown on the critical fluid velocity, critical Reynolds and Nusselt numbers. The results are validated with other published work which shows the accuracy of obtained results of this work. Numerical results indicate that for heat generation of $Q=10MW/m^3$, adding 6% $AL_2O_3$ nanoparticles to the fluid increases 20% the critical fluid velocity and 15% the Nusselt number which can be useful for heat exchangers.

3D 프린팅 가동 조건 별 발생 입자크기 분포와 흡입 노출량 추정 (Size Distributions of Particulate Matter Emitted during 3D Printing and Estimates of Inhalation Exposure)

  • 박지훈;전혜준;박경호;윤충식
    • 한국환경보건학회지
    • /
    • 제44권6호
    • /
    • pp.524-538
    • /
    • 2018
  • Objective: This study aimed to identify the size distributions of particulate matter emitted during 3D printing according to operational conditions and estimate particle inhalation exposure doses at each respiratory region. Methods: Four types of printing filaments were selected: acrylonitrile-butadiene-styrene (ABS), polylactic acid (PLA), Laywood, and nylon. A fused deposition modeling (FDM) 3D printer was used for printing. Airborne particles between 10 nm and $10{\mu}m$ were measured before, during, and after printing using real-time monitors under extruder temperatures from 215 to $290^{\circ}C$. Inhalation exposures, including inhaled and deposited doses at the respiratory regions, were estimated using a mathematical model. Results: Nanoparticles dominated among the particles emitted during printing, and more particles were emitted with higher temperatures for all materials. Under all temperature conditions, the Laywood emitted the highest particle concentration, followed by ABS, PLA, and nylon. The particle concentration peaked for the initial 10 to 20 minutes after starting operations and gradually decreased with elapsed time. Nanoparticles accounted for a large proportion of the total inhaled particles in terms of number, and about a half of the inhaled nanoparticles were estimated to be deposited in the alveolar region. In the case of the mass of inhaled and deposited dose, particles between 0.1 and $1.0{\mu}m$ made up a large proportion. Conclusion: The number of consumers using 3D printers is expected to expand, but hazardous emissions such as thermal byproducts from 3D printing are still unclear. Further studies should be conducted and appropriate control strategies considered in order to minimize human exposure.

신경회로망을 이용한 KOSPI 예측 기반의 ETF 매매 (ETF Trading Based on Daily KOSPI Forecasting Using Neural Networks)

  • 황희수
    • 한국융합학회논문지
    • /
    • 제10권1호
    • /
    • pp.7-12
    • /
    • 2019
  • 신경회로망은 적합한 수학적 모델에 대한 가정 없이 데이터로부터 유용한 정보를 추출해서 예측에 필요한 입출력 관계를 정의할 수 있어서 주가 예측에 널리 사용되어 왔다. 본 논문에서는 신경회로망 모델을 사용하여 일별 KOrea composite Stock Price Index (KOSPI) 종가를 예측한다. 예측된 종가를 기반으로 KOSPI에 연동해 변동하는 Exchange Traded Funds (ETFs)의 거래를 위한 알파 매매를 제안한다. 본 논문에 제안된 방법으로 KOSPI 예측 신경회로망 모델들을 구현하고 예측 정확도를 평가한다. 구현된 신경회로망 모델(NN1)의 학습 오차(MAPE)는 0.427, 평가 오차는 0.627이다. 평가용 데이터를 사용해 알파 매매를 시뮬레이션하면 수익률은 7.16 ~ 15.29 %를 보인다. 이는 125 거래일 데이터로 거둔 수익률로 제안된 알파 매매가 효과적임을 보인다.

Earthquake response of nanocomposite concrete pipes conveying and immersing in fluid using numerical methods

  • Maleki, Mostafa;Bidgoli, Mahmood Rabani;Kolahchi, Reza
    • Computers and Concrete
    • /
    • 제24권2호
    • /
    • pp.125-135
    • /
    • 2019
  • Concrete pipelines are the most efficient and safe means for gas and oil transportation over a long distance. The use of nano materials and nono-engineering can be considered for enhancing concrete pipelines properties. the tests show that SiO2 nanoparticles can improve the mechanical behavior of concrete. Moreover, severe hazard for pipelines is seismic ground motion. Over the years, scientists have attempted to understand pipe behavior against earthquake most frequently via numerical modeling and simulation. Therefore, in this paper, the dynamic response of underwater nanocomposite submerged pipeline conveying fluid is studied. The structure is subjected to the dynamic loads caused by earthquake and the governing equations of the system are derived using mathematical model via Classic shell theory and Hamilton's principle. Navier-Stokes equation is employed to calculate the force due to the fluid in the pipe. As well, the effect of external fluid is modeled with an external force. Mori-Tanaka approach is used to estimate the equivalent material properties of the nanocomposite. 1978 Tabas earthquake in Iran is considered for modelling seismic load. The dynamic displacement of the structure is extracted using differential quadrature method (DQM) and Newmark method. The effects of different parameters such as SiO2 nanoparticles volume percent, boundary conditions, thickness to radius ratios, length to radius ratios, internal and external fluid pressure and earthquake intensity are discussed on the seismic response of the structure. From results obtained in this paper, it can be found that the dynamic response of the pipe is increased in the presence of internal and external fluid. Furthermore, the use of SiO2 nanoparticles in concrete pipeline reduces the displacement of the structure during an earthquake.

시위 방향 비대칭 단면의 복합재료 박벽보의 동특성 연구: II. 다중-셀 (Dynamic Characteristics of Composite Thin-Walled Beams with a Chord-Wise Asymmetric Cross-Section: II. Multi-Cell)

  • 김근택
    • 항공우주시스템공학회지
    • /
    • 제13권2호
    • /
    • pp.51-59
    • /
    • 2019
  • 이번 연구에서는 앞서 Part I [1]에서 수행한 단일-셀(single-cell) 모델에 이어, 시위 방향으로 비대칭성 단면을 가지는 다중-셀(multi-cell) 복합재료 박벽보(thin-walled beam) 모델을 선정하여, 단면의 형상에 대한 이론적인 동특성을 해석하였다. 이를 위해 와핑 구속 효과와 전단 변형 효과, 보의 테이퍼비와 단면비 등을 고려하였다. Part I에서와 마찬가지로 다중-셀 단면의 질량 및 강성 계수와 고유 진동수 등의 특성을 조사하였다. 특히, 다중-셀과 단일-셀 단면을 비교하고, 다중-셀 단면의 고유 진동수에 미치는 테이퍼비와 단면비의 영향을 비교 분석하였다. 또한, 단면의 비대칭성과 와핑 함수를 보정하지 않은 경우에 대해 그 결과를 비교하였다.

유상하중의 불확실성을 고려한 쿼드로터의 모델 참조 적응제어 기법 설계 (Model Reference Adaptive Control of a Quadrotor Considering the Uncertainty of Payload)

  • 이동우;김남수;장광우;이성헌;방효충
    • 한국항공우주학회지
    • /
    • 제49권9호
    • /
    • pp.749-757
    • /
    • 2021
  • 쿼드로터를 활용한 운송 임무에서 임의의 유상하중을 장착하게 되면 질량, 관성모멘트, 무게중심의 위치와 같은 모델 파라미터가 변화하게 된다. 더욱이 유상하중이 기체에 장착되는 위치가 기체의 무게중심과 일치하지 않는 경우 무게중심의 변화는 야기되며 이는 제어 성능에 악영향을 미치게 된다. 이에 본 논문에서는 유상하중에 따른 모델의 불확실성을 보상하기 위하여, 선형 제차 조정기(Linear Quadratic Regulator, LQR) 기반의 모델 참조 적응 제어기법(Model Reference Adaptive Control, MRAC)을 제안한다. 먼저 고정된 유상하중을 고려한 쿼드로터의 동역학 모델을 유도하고, 선형 제차 조정기를 이용하여 기준제어기를 선정한다. 참조 모델은 과도응답을 향상하기 위해 폐루프 참조 모델을 사용하였으며, 선형 제차 조정기를 통하여 선정하였다. 또한, 안정성 분석을 통하여 모델 파라미터를 추정하기 위한 적응 제어기법을 설계하였다. 제안하는 제어기의 성능을 확인하기 위하여 모델 파라미터의 불확실성이 존재하는 상황에서 선형 재차 조정기와 성능을 비교하였다. 그리고 외란이 있는 상황에서 기존의 모델 참조 적응 제어기법과도 제안한 제어기의 결과를 비교하여 과도응답과 강건성에 대해서도 분석하였다.