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Introduction 

The novel coronavirus disease 2019 (COVID-19) presents an important and urgent 
threat to global health. Since the outbreak in early December 2019 in the Hubei province 
of the People’s Republic of China, the number of patients confirmed to have the disease 
has exceeded 118 million as the disease spread globally, and the number of people infect-
ed is probably much higher [1]. More than 2.6 million people have died from COVID-19 
(up to 11 March 2021) [2]. Despite public health responses aimed at containing the dis-
ease and delaying the spread [3,4], several countries have been confronted with a critical 
care crisis, and more countries could follow [5].  

To mitigate and suppress the burden of COVID-19 on the healthcare system, while 
also protecting the general public, especially the highly susceptible group of people, ro-
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For the novel coronavirus disease 2019 (COVID-19), predictive modeling, in the literature, 
uses broadly susceptible exposed infected recoverd (SEIR)/SIR, agent-based, curve-fitting 
models. Governments and legislative bodies rely on insights from prediction models to sug-
gest new policies and to assess the effectiveness of enforced policies. Therefore, access to 
accurate outbreak prediction models is essential to obtain insights into the likely spread 
and consequences of infectious diseases. The objective of this study is to predict the future 
COVID-19 situation of Korea. Here, we employed 5 models for this analysis; SEIR, local lin-
ear regression (LLR), negative binomial (NB) regression, segment Poisson, deep-learning 
based long short-term memory models (LSTM) and tree based gradient boosting machine 
(GBM). After prediction, model performance comparison was evelauated using relative 
mean squared errors (RMSE) for two sets of train (January 20, 2020–December 31, 2020 
and January 20, 2020–January 31, 2021) and testing data (January 1, 2021–February 28, 
2021 and February 1, 2021–February 28, 2021) . Except for segmented Poisson model, the 
other models predicted a decline in the daily confirmed cases in the country for the coming 
future. RMSE values’ comparison showed that LLR, GBM, SEIR, NB, and LSTM respectively, 
performed well in the forecasting of the pandemic situation of the country. A good under-
standing of the epidemic dynamics would greatly enhance the control and prevention of 
COVID-19 and other infectious diseases. Therefore, with increasing daily confirmed cases 
since this year, these results could help in the pandemic response by informing decisions 
about planning, resource allocation, and decision concerning social distancing policies. 
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bust models that predict the prognosis of COVID-19 were urgent-
ly needed to support decisions about shielding, hospital admis-
sion, treatment, and population level interventions [6]. In this sit-
uation, prediction tools can help project different scenarios such as 
(1) number of possible confirmed (new) cases, (2) number of 
possible hospitalized cases, (3) number of possible death cases 
and so forth. As a consequence, prediction tools are useful for sev-
eral different purposes [7]. 

Other features, such as social distancing, stay-at-home orders, 
use of facemasks or self-quarantine, travel restriction, and contact 
tracing could help predict what comes next. For better understand-
ing, prediction models are important for better estimation about 
the disease and its possible threats such as the number of cases 
based on the level of severity can help determine the need of num-
bers of ventilators and other sophisticated medical equipment. 
Furthermore, countries need to shape their health system respons-
es in accordance with the need [8]. Therefore, access to accurate 
outbreak prediction models is essential to obtain insights into the 
likely spread and consequences of infectious diseases. Govern-
ments and other legislative bodies rely on insights from prediction 
models to suggest new policies and to assess the effectiveness of 
the enforced policies [9]. 

For COVID-19, predictive modeling, in the literature, uses 
broadly susceptible exposed infected recoverd (SEIR/SIR), agent-
based, curve-fitting models. Besides, machine-learning models 
that are built on statistical tools have widely been used too [7]. 
Here, we employ statistical models; segmented Poisson, negative 

binomial (NB), and local likelihood regression (LLR), mathemati-
cal model SEIR, deep-learning based model long short-term mem-
ory (LSTM), and tree based gradient boosting machine (GBM) for 
prediction of future COVID-19 pandemic situation of Korea. The 
COVID-19 daily confirmed cases of Korea was divided into two re-
gions: capital area (Seoul metropolitan area) and non-capital area 
(non Seoul metropolitan area). Domestic which is the sum of Capi-
tal and non-capital areas was also analyzed (Fig. 1). The daily con-
firmed cases of these regions were then split into train ( January 
20, 2020–December 31, 2020 and January 20, 2020–January 31, 
2021) and test (January 1, 2021–Febraury 28, 2021 and Febraury 
1, 2021–February 28, 2021) datasets. The prediction performance 
of the above models were tested using relative mean square error 
(RMSE). RMSE takes the total squared error and normalizes it by 
dividing by the total squared error of a simple predictor. Thus, the 
smaller the RMSE value, the better the prediction performance of 
the model. 

Therefore, with increasing daily confirmed cases since the be-
ginning of 2021, in Korea and elsewhere, such models could help 
in the response to pandemic by informing decisions about plan-
ning, resource allocation, and decision of the social distancing. 

Methods 

COVID-19 confirmed cases data 
The daily series of confirmed cases of COVID-19 for South Korea 
from January 20, 2020 to Febraury 28, 2021 was obtained from 
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Fig. 1. Daily confirmed cases of South Korea. Daily confirmed cases of capital, non-capital, and domestic is represented in red, blue, and 
green, respectively.

https://doi.org/10.5808/gi.210282 / 8

Goo T • Forecasting of the COVID-19 pandemic of Korea



where ci (i = 1,2,3) are breakpoints. 

NB model  
NB model is defined as [12]; 

Yt|Ft–1~NB (λt, ϕ), 

where λt is the conditional expectiation of Yt given Ft-1 as the histo-
ry of the joint process {Yt,λt:t∈ℕ}. Conditional mean and vari-
ance of Yt are defined as; 

E(Yt|Ft-1) =  λt 

VAR(Yt|Ft-1) =  λt+ λt
2/ϕ, 

where ϕ is the dispersion parameter. And overdispersion parame-
ter σ2 is defined as σ2 = 1/ϕ. NBdistribution is defined as;  

where y = 0,1,…n. For estimating λt, l = {1,7,21} were used as 
lagged confirmed cases and log(λt) =  β0 +        βi* log(Yt-li + 1), were 
used for the model. For NB model, package ‘tscount’ were used to 
analyze the confirmed cases of South Korea as time series count 
data [13]. 

LLR model 
Our LLR model is based on Poisson model which previously men-
tioned. For this model, local quadratic approximation is fitted 
within a smoothing window of bandwidth h, which is the number 
of the nearest past observations to be used in the local fit. We use 
tricube kernel of weight W(u) = (1–|u|3)3 for each point. The local 
quadratic log-likelihood is defined as;  

Kaggle (from January 20 to June 30, 2020) [10] and Korea public 
data portal of the Ministry of Health and Welfare (from July 1, 
2020 to February 28, 2021) [11]. The combined data was divided 
into two regions: capital or Seoul Metropolitan area (Capital; 
Seoul, Incheon, and Gyeonggi-do) and non-capital or non-Seoul 
Metropolitan area (non-capital; other cities beside Seoul, Incheon, 
and Gyeonggi-do). The analysis was conducted on the Domestic 
area (capital and non-capital), Seoul Metropolitan area, and non-
Seoul Metropolitan area data, respectively. The data was split into 
two subsets. First subset is composed of training ( January 20, 
2020–December 31, 2020) and test data (the last 59 days, January 
1, 2021–Febraury 28, 2021). And second subset is composed of 
training ( January 20, 2021–January 31, 2021) and test data (the 
last 28 days, February 1, 2021–Febraury 28, 2021) for down-
stream analysis with the test data used for prediction analysis.  

Prediction models
As one model may not give the best prediction of the COVID-19 
situation of Korea, we present prediction results estimated by dif-
ferent models that can apply the above data. Many models are 
available and have been implemented for forecasting the pandemic 
situation of many countries and look at afew. In this section, we in-
troduce segmented Poisson model, LLR model, deep-learning 
based LSTM model, NB model, SEIR model, and GBM model 
used for predicting the COVID-19 situation of Korea. 

Segmented Poisson model 
Here, we regarded the confirmed cases as a function of time t 
based on a segmented Poisson model. Let Yt be the confirmed cas-
es at day t which is the number of days since the first case occurred. 
Poisson model is defined as; 

Yt~poisson(μt), 

where μt is the expectation of Yt with segments. 
Breakpoints were considered in the daily confirmed cases during 

the analysis by splitting the daily confirmed cases into segments 
(Supplemantary Table 1). These breakpoints were decided using 
some of the aforementioned significant events linked to the spread 
of COVID-19 in South Korea. Since there are three breakpoints, 
four segments are defined as follows: 

log(μt) =  

β0 + β11t + β21 log (t + 1), (t =  0, 1, ..., c1 – 1)

β0 + β11t + β21 log (t + 1) + β12 (t – c )+ β22 log (t – c + 1), (t =  c1, ..., c2 – 1)

β0 + β11t + β21 log (t + 1) + ... + β13 (t – c )+ β23 log (t – c + 1), (t =  c2, ..., c3 – 1)

β0 + β11t + β21 log (t + 1) + ... + β14 (t – c )+ β24 log (t – c + 1), (t =  c3, ..., n)

where wi(t) =  W(     ) and l are the log-likelihood function based 
on Poisson distribution assumption. The local likelihood estimate 
is made by maximizing over the parameter a = (a0, a1, a2)t. 

We utilize a rolling origin cross validation to select optimal band-
width of the smoothing window [14]. Validation sets are divided at 
the local peaks of counts. Validation MSE is cumulated by each vali-
dation set's counts being predicted using past validations sets. The 
bandwidth with the smallest validation MSE is selected as optimal 
bandwith. And then using optimal bandwith we finally fitted LLR 
model. For LLR model [15], package ‘locfit’ was used [16]. 
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Long short-term memory 
Here, LSTM network is considered [17]. Let the input data Xt be 
as a set of vector consisting of Yt-h to Yt-1 according to day t, where h 
is the bandwidth having values {7, 14, 21, 28, 35, 42, 49, 56}. 
Among these, the optimal h is selected using validation set, which 
is last 7 days of the training period. The data is normalized using 
minmax normalizer to transform data to be in the range of 0 to 1. 

The LSTM architecture is described in Fig. 2 [18]. Each blocks 
in the model use current input value Xt with Ct-1 and ht-1 to be 
trained. The Ct-1 and ht-1 are the state and output of the last block, 
respectively. We assume four blocks with 64 units, each with a 0.2 
dropout layer. The optimization is held using the adam optimizer 
to minimize the MSE during the training process. 

Once the optimal model is built, it is applied to the test data for 
prediction. The prediction is performed sequentially by using the 
current output as the part of input of the next prediction. The 
analysis was performed using Python version 3.7.6, and ‘keras’ li-
brary. 

SEIR model with least squares 
The infectious disease dynamic can be formulated with a mathe-
matical model. We consider the SEIR model to fit the dataset of 
COVID-19 daily confirmed cases and predict the incidence of 
COVID-19 epidemic in Korea. In SEIR model, population is di-
vided in four groups: susceptible (S), exposed (E), symptomatic 
and infectious (I) and recovered (R) individuals. This model in-
cludes the spread of infection during the latent period. The latency 
of COVID-19 infection is biologically realistic. The SEIR model is 
defined by the following the system of ordinary differential equa-
tions [19-22]:  

where β is the transmission rate, γ is the recovery rate, and 1/κ is 
the average incubation period. The initial condition of this model 
S(0), E(0), I(0), R(0) must satisfy the condition S(0) + E(0) + 
I(0) + R(0) =  N, where N is the total population size. In data fit-
ting, the unknown parameters in model were estimated by a least 
squares algorithm. The numerical simulation and analysis were 
performed in MATLAB 2020a.  

Gradient boosting machine 
GBM is a tree based machine learning algorithm that can be used 
for regression and classification problems. GBM consist of weak 
regression learner and decision trees. The decision tree uses the 
input value to determine which regression learner is best to make 
predictions. 

Based on adaptive boosting algorithm, GBM can build a strong 
regression learner by iteratively combining a set of weak regression 
leaners. GBM use gradient descent for minimizing loss function of 
a strong regression learner. Like other boosting algorithms, GBM 
adds models into the tree using greedy style [23]: 

Fm(x) = Fm-1(x) + ρmhm(x),

where Fm is the updated model, Fm-1 is previous model and ρmhm is 

BA

Fig. 2. Long short-term memory (LSTM) model architecture. (A) Overall architecture of LSTM. (B) The LSTM block architecture.
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the newly added model. hm is the trained base learner which mini-
mizes the loss function L and ρ is the multiplier which is found by 
solving one dimensional optimization problem.  

ρm =  argmin Σ L (yi , Fm-1 (xi) + ρhm (xi)),

To build GBM, ‘LightGBM’ library was used [24]. 

Model assessment 
To evaluate the above models, RMSEs for the train and test data-
sets for each of the fitted models were calculated as follows:  

RMSE =  Σ                  ,

where n is the number of data points, yt is the observed values, μt is 
the predicted values from a fitted model and y³ is the mean of ob-
served values. To compare models predicting different regions, 
having different scale of confirmed cases, RMSE measure was cho-
sen. 

Results 

The COVID-19 daily confirmed cases of the country were divided 
into two regions (non-capital and capital) with the total being do-

mestic and analysed using the above models. The data was split 
into two subsets and used in the training and prediction analysis of 
the models. 

As for model evaluation, in Table 1, for comparison of models in 
the whole country and the two regions, we observe that the train 
RMSE is always lower than the test RMSE, with the domestic re-
gion producing the highest RMSE values for all models. Also, the 
segmented Poisson model gives higher RMSE values when com-
pared with other methods. With the first data subset: in the whole 
country (domestic), SEIR model and GBM had the lowest train 
RMSE values while NB and LLR had the lowest test RMSE values. 
In the Capital region, GBM and LLR have the lowest train RMSE 
while LLR and SEIR have the lowest test RMSE values, respective-
ly. The non-capital region showed that SEIR and GBM have the 
lowest train RMSE while GBM and LLR have the lowest test 
RMSE values, respectively. 

With the second data subset: in the country, LLR and SEIR had 
the lowest RMSE while NB and GBM had the lowest train RMSE 
values, respectively. Capital region showed that LLR and NB had 
the lowest train RMSE while NB and GBM had the lowest test 
RMSE values. In the non-capital region, SEIR and LLR had the 
lowest train RMSE while NB and GBM had the lowest test RMSE 
values. 

Therefore, taking into lower train and test RMSE values for all 

Table 1. RMSE for the regions and models following the the two data subsets

Region Model
RMSE of data split 1 RMSE of data split 2

Train Test Train Test
(Jan 20, 2020–Dec 31, 2021) (Jan 1, 2021–Feb 28, 2021) (Jan 20, 2020–Jan 31, 2021) (Feb 1, 2021–Feb 28, 2021)

Domestic Segmented Poisson 0.088 1194.103 0.251 16.415
Negative binomial 0.057 0.409 0.063 2.088
Local regression 0.037 0.793 0.039 14.856
LSTM 0.051 23.117 0.083 6.327
SEIR 0.033 0.956 0.035 2.658
GBM 0.022 1.507 0.082 0.591

Capital Segmented Poisson 0.075 668.199 0.235 5.312
Negative binomial 0.061 1.311 0.064 3.078
Local regression 0.042 1.135 0.046 3.846
LSTM 0.054 14.8 0.074 3.934
SEIR 0.073 0.410 0.072 3.109
GBM 0.021 1.960 0.095 0.892

Non-capital Segmented Poisson 0.118 1131.838 0.195 34.935
Negative binomial 0.097 0.912 0.103 1.157
Local regression 0.074 0.522 0.076 33.232
LSTM 0.087 15.207 0.119 4.774
SEIR 0.036 0.610 0.036 1.964
GBM 0.015 0.607 0.083 0.855

RMSE, relative mean squared error; LSTM, long short-term memory; SEIR, susceptible exposed infected recoverd; GBM, gradient boosting machine.
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region and both data subsets, we can conclude that LLR model, 
GBM, SEIR model and then NB model were the best prediction 
models for forecasting of the COVID-19 situation of Korea. Seg-
mented Poisson model tended to have the highest test RMSE val-
ues in all scenarios. 

A look that the prediction plots of the these models shows that 
the daily COVID-19 confirmed cases will decline in the country 
(domestic), Seoul metropolitan (capital) and non-Seoul metro-
politan (non-capital) areas using LLR, and NB models using the 
first data subset, while it will increase and stay constant using the 
segmented Poisson and LSTM models, respectively (Supplemen-
tary Figs. 1–3). With the second data subset, daily COVID-19 
confirmed cases will decline in the three regions as predicted by 
NB, segmented Poisson and LSTM models, while it will increase 
in the country and non metropolitan areas but will decline in the 
metropolitan areas, using LLR model (Supplementary Figs. 4–6). 
The SEIR and GBM models shows a decrease in daily confirmed 
cases in the country and the two regions for all data subsets (Sup-
plementary Figs. 7 and 8).  

Discussion 

The objective of our analysis was to predict the future COVID-19 
situation of South Korea using daily confirmed cases. We em-
ployed six different models in this analysis and all models gave 
some different prediction results for different data subsets and re-
gions. The evaluation of the models using RMSE showed that lo-
cal likelihood rgression, GBM, SEIR and NB models had the low-
est RMSE values, making them the best models, though LSTM 
gave better RMSE values compared to segmented Poisson model. 
LLR, GBM, SEIR, NB and LSTM models mainly predicted a de-
cline in COVID-19 daily confirmed cases in the country and the 
two regions of Korea. We can reasonably take that these results 
portray the future situation of the country. 

With the first dataset, NB, SEIR, and LLR, respectively showed 
the best test performance in domestic, capital, and non-capital ar-
eas, while with second dataset, GBM showed the best test perfor-
mance for all regions. In case of NB model, we found that the coef-
ficient of confirmed cases of the day before had the largest value. 
This means that confirmed cases of the day before can affect the 
prediction of most future confirmed cases. In case of GBM, we 
could obtain feature importance plots of the model (Supplemen-
tary Fig. 9). We discovered that the confirmed cases of the last day 
was the most important feature for all regions. Thus, the models 
using the confirmed cases of the past days seemed to perform bet-
ter than other models without using such data. The parameters of 
the mathematical model SEIR can be easily interpreted as a rate or 

transition parameter. However, the local regression does have too 
many parameters to assign meaningful interpretation. 

Note that the number of daily confirmed cases varied across re-
gions of Korea, so we first fitted these models for each of the re-
gions and compared them with the number of observed cases. 
However, the comparison of prediction models based on regional 
data was not convincing due to the small sample sizes. Instead of 
fitting the models for each region, we considered combining the 
two regions of capital and non-capital areas, which provided 
enough sample sizes. We also tried predicitng the number of 
deaths due to COVID-19. However, the data was not large enough 
(with only 1,669 deaths as of March 14, 2021) [25] to provide re-
liable fitted results from the models. 

In our study, there is one challenge that predictions made reflect 
interventions in place at the time the model was developed. So, 
one can argue the influence of government intervention policies in 
the above observed results. However, our comparison result is still 
valid because all models reflected the same intervention effects. 
Actually, the Korean government has maintained a high level of 
social distancing with a ban in gatherings of more than five persons 
[26], in their efforts to lower the triple-digit number of daily con-
firmed cases that has been observed since the start of this year. Ac-
cording to Heo et al.’s study [27] on the COVID-19 situation of 
Korea, the Korean government social distancing policy was pre-
dicted to lead to a decrease in the daily confirmed cases observed 
in the country but with only segmented Poisson model which ac-
cording RMSE value, did not perform well as compared to the 
other models. In future, we hope to control for the influence of 
government interventions using the other models, to give a whole 
picture of the future COVID-19 situation of the country. 

A good understanding of the epidemic dynamic would greatly 
enhance the control and prevention of COVID-19 as well as other 
infectious diseases. Therefore, taking precaution when using pre-
diction to support a decision, for example, return to work or low-
ering of the social distancing level, is highly encouraged too. 
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