DOI QR코드

DOI QR Code

Seismic response of underwater fluid-conveying concrete pipes reinforced with SiO2 nanoparticles using DQ and Newmark methods

  • 투고 : 2017.09.17
  • 심사 : 2018.03.23
  • 발행 : 2018.06.25

초록

Concrete pipelines are the most efficient and safe means for gas and oil transportation over a long distance. The use of nano materials and nono-engineering can be considered for enhancing concrete pipelines properties. the tests show that $SiO_2$ nanoparticles can improve the mechanical behavior of concrete. Moreover, severe hazard for pipelines is seismic ground motion. Over the years, scientists have attempted to understand pipe behavior against earthquake most frequently via numerical modeling and simulation. Therefore, in this paper, the dynamic response of underwater nanocomposite submerged pipeline conveying fluid is studied. The structure is subjected to the dynamic loads caused by earthquake and the governing equations of the system are derived using mathematical model via Classic shell theory and Hamilton's principle. Navier-Stokes equation is employed to calculate the force due to the fluid in the pipe. As well, the effect of external fluid is modeled with an external force. Mori-Tanaka approach is used to estimate the equivalent material properties of the nanocomposite. 1978 Tabas earthquake in Iran is considered for modelling seismic load. The dynamic displacement of the structure is extracted using differential quadrature method (DQM) and Newmark method. The effects of different parameters such as $SiO_2$ nanoparticles volume percent, boundary conditions, thickness to radius ratios, length to radius ratios, internal and external fluid pressure and earthquake intensity are discussed on the seismic response of the structure. From results obtained in this paper, it can be found that the dynamic response of the pipe is increased in the presence of internal and external fluid. Furthermore, the use of $SiO_2$ nanoparticles in concrete pipeline reduces the displacement of the structure during an earthquake.

키워드

참고문헌

  1. Abdoun, T.H., Ha, D., O'Rourke, M., Symans, M., O'Rourke, T., Palmer, M. and Harry, E. (2009), "Factors influencing the behavior of buried pipelines subjected to earthquake faulting", Soil Dyn. Earthq. Eng., 29, 415-427. https://doi.org/10.1016/j.soildyn.2008.04.006
  2. Alijani, F. and Amabili, M. (2014), "Nonlinear vibrations and multiple resonances of fluid filled arbitrary laminated circular cylindrical shells", Compos. Struct., 108, 951-962. https://doi.org/10.1016/j.compstruct.2013.10.029
  3. Amabili, M. (2008), Nonlinear Vibrations and Stability of Shells and Plates, Cambridge University Press, Cambridge.
  4. Amabili, M. and Paidoussis, M.P. (2003), "Review of studies on geometrically nonlinear vibrations and dynamics of circular cylindrical shells and panels, with and without fluid-structure interaction", Appl. Mech. Rev., 56, 349-381. https://doi.org/10.1115/1.1565084
  5. Amabili, M., Pellicano, F. and Paidoussis, M.P. (1999a), "Nonlinear dynamics and stability of circular cylindrical shells containing flowing fluid Part I: stability", J. Sound Vib., 225, 655-699. https://doi.org/10.1006/jsvi.1999.2255
  6. Amabili, M., Pellicano, F. and Paidoussis, M.P. (1999b), "Nonlinear dynamics and stability of circular cylindrical shells containing flowing fluid Part II: large-amplitude vibrations without flow", J. Sound Vib., 228, 1103-1124. https://doi.org/10.1006/jsvi.1999.2476
  7. Amabili, M., Pellicano, F. and Paidoussis, M.P. (2000), "Nonlinear dynamics and stability of circular cylindrical shells containing flowing fluid. Part III: truncation effect without flow and experiments", J. Sound Vib., 237, 617-640. https://doi.org/10.1006/jsvi.2000.3071
  8. Benjamin, T.B. (1961), "Dynamics of a system of articulated pipes conveying fluid", Proc. Royal Soc. A., 261(130), 457-486. https://doi.org/10.1098/rspa.1961.0090
  9. Brush, O. and Almorth, B. (1975), Buckling of Bars, Plates and Shells, Mc-Graw Hill.
  10. Chen, W., Shih, B.J., Chen, Y.C., Hung, J.H. and Hwang, H.H. (2002), "Seismic response of natural gas and water pipelines in the Ji-Ji earthquake", Soil Dyn. Earthq. Eng., 22, 1209-1214. https://doi.org/10.1016/S0267-7261(02)00149-5
  11. Dey, T. and Ramachandra, L.S. (2017), "Non-linear vibration analysis of laminated composite circular cylindrical shells", Compos. Struct., 163, 89-100. https://doi.org/10.1016/j.compstruct.2016.12.018
  12. Ghavanloo, E. and Fazelzadeh, A. (2011), "Flow-thermoelastic vibration and instability analysis of viscoelastic carbon nanotubes embedded in viscous fluid", Physica E., 44, 17-24. https://doi.org/10.1016/j.physe.2011.06.024
  13. GhorbanpourArani, A., Bagheri, M.R., Kolahchi, R. and KhodamiMaraghi, Z. (2013), "Nonlinear vibration and instability of fluid-conveying DWBNNT embedded in a visco-Pasternak medium using modified couple stress theory", J. Mech. Sci. Tech., 27(9), 2645-2658. https://doi.org/10.1007/s12206-013-0709-3
  14. Gong, S.W., Lam, K.Y. and Lu, C. (2000), "Structural analysis of a submarine pipeline subjected to underwater shock", Int. J. Pres. Ves. Pip., 77, 417-423. https://doi.org/10.1016/S0308-0161(00)00022-3
  15. Housner, G.W. (1952), "Bending vibrations of a pipe line containing flowing fluid", J. Appl. Mech., 19, 205-208.
  16. Huang, Y.M., Liu, Y.S., Li, B.H., Li, Y.J. and Yue, Z.F. (2010), "Natural frequency analysis of fluid conveying pipeline with different boundary conditions", Nucl. Eng. Des., 240(3), 461-467. https://doi.org/10.1016/j.nucengdes.2009.11.038
  17. Inozemtcev, A.S., Korolev, E.V. and Smirnov, V.A. (2017), "Nanoscale modifier as an adhesive for hollow microspheres to increase the strength of high-strength lightweight concrete", Struct. Concrete, 18(1), 67-74. https://doi.org/10.1002/suco.201500048
  18. JafarianArani, A and Kolahchi, R. (2016), "Buckling analysis of embedded concrete columns armed with carbon nanotubes", Comput. Concrete, 17(5), 567-578. https://doi.org/10.12989/cac.2016.17.5.567
  19. Kolahchi, R., RabaniBidgoli, M., Beygipoor, G.H. and Fakhar, M.H. (2015), "A nonlocal nonlinear analysis for buckling in embedded FG-SWCNT-reinforced microplates subjected to magnetic field", J. Mech. Sci. Tech., 29, 3669-3677. https://doi.org/10.1007/s12206-015-0811-9
  20. Lam, K.Y., Zong, Z. and Wang, Q.X. (2003), "Dynamic response of a laminated pipeline on the seabed subjected to underwater shock", Compos. Part B-Eng., 34, 59-66. https://doi.org/10.1016/S1359-8368(02)00072-0
  21. Lee, U. and Oh, H. (2003), "The spectral element model for pipelines conveying internal steady flow", Eng. Struct., 25, 1045-1055. https://doi.org/10.1016/S0141-0296(03)00047-6
  22. Li, Ch., Zhang, Y., Tu, W., Jun, C., Liang, H. and Yu, H. (2017), "Soft measurement of wood defects based on LDA feature fusion and compressed sensor images", J. Forest. Res., 28, 1285-1292. https://doi.org/10.1007/s11676-017-0395-6
  23. Lin, W. and Qiao, N. (2008), "Vibration and stability of an axially moving beam immersed in fluid", Int. J. Solid. Struct., 45, 1445-1457. https://doi.org/10.1016/j.ijsolstr.2007.10.015
  24. Liu, H., Ma, J. and Huang, W. (2018), "Sensor-based complete coverage path planning in dynamic environment for cleaning robot", CAAI Trans. Intell. Technol., 3, 65-72. https://doi.org/10.1049/trit.2018.0009
  25. Liu, Z.G., Liu, Y. and Lu, J. (2012), "Fluid-structure interaction of single flexible cylinder in axial flow", Comput. Fluid., 56, 143-151. https://doi.org/10.1016/j.compfluid.2011.12.003
  26. Lopes, J.L., Paidoussis, M.P. and Semler, C. (2002), "Linear and nonlinear dynamics of cantilevered cylinders in axial flow part 2: the equations of motion", J. Fluid Struct., 16, 715-737. https://doi.org/10.1006/jfls.2002.0448
  27. Mori, T. and Tanaka, K. (1973), "Average stress in matrix and average elastic energy of materials with misfitting inclusions", Acta. Metall. Mater., 21, 571-574. https://doi.org/10.1016/0001-6160(73)90064-3
  28. Motezaker, M. and Kolahchi, R. (2017), "Seismic response of $SiO_2$ nanoparticles-reinforced concrete pipes based on DQ and newmark methods", Comput. Concrete, 19(6), 745-753. https://doi.org/10.12989/CAC.2017.19.6.745
  29. Padhy, S. and Panda, S. (2017), "A hybrid stochastic fractal search and pattern search technique based cascade PI-PD controller for automatic generation control of multi-source power systems in presence of plug in electric vehicles", CAAI Trans. Intell. Technol., 2, 12-25. https://doi.org/10.1016/j.trit.2017.01.002
  30. Paidoussis, M.P. (2004), Fluid-Structure Interactions, Slender Structures and Axial Flow, Vol. 2, Elsevier Academic Press, London.
  31. Paidoussis, M.P. (2005), "Some unresolved issues in fluidstructure interactions", J. Fluid Struct., 20, 871-890. https://doi.org/10.1016/j.jfluidstructs.2005.03.009
  32. Paidoussis, M.P. and Issid, N.T. (1974), "Dynamic stability of pipes conveying fluid", J. Sound Vib., 33, 267-294. https://doi.org/10.1016/S0022-460X(74)80002-7
  33. Paidoussis, M.P., Grinevich, E., Adamovic, D. and Semler, C. (2007a), "Linear and nonlinear dynamics of cantilevered cylinders in axial flow part 1: physical dynamics", J. Fluid Struct., 16, 691-713.
  34. Paidoussis, M.P., Semler, C., Wadham-Gagnon, M. and Saaid, S. (2007b), "Dynamics of cantilevered pipes conveying fluid part 2: dynamics of the system with intermediate spring support", J. Fluid Struct., 23, 569-587. https://doi.org/10.1016/j.jfluidstructs.2006.10.009
  35. Rabani Bidgoli, M. and Saeidifar, M. (2017), "Time-dependent buckling analysis of $SiO_2$ nanoparticles reinforced concrete columns exposed to fire", Comput. Concrete, 20(2), 119-127. https://doi.org/10.12989/CAC.2017.20.2.119
  36. Rabani Bidgoli, M., Karimi, M.S. and Ghorbanpour Arani, A. (2016), "Nonlinear vibration and instability analysis of functionally graded CNT-reinforced cylindrical shells conveying viscous fluid resting on orthotropic Pasternak medium", Mech. Adv. Mater. Struct., 23(7), 819-831. https://doi.org/10.1080/15376494.2015.1029170
  37. Ray, M.C. and Reddy, J.N. (2013), "Active damping of laminated cylindrical shells conveying fluid using 1-3 piezoelectric composites", Compos. Struct., 98, 261-271. https://doi.org/10.1016/j.compstruct.2012.09.051
  38. Rishikeshan, C.A. and Ramesh, H. (2017), "A novel mathematical morphology based algorithm for shoreline extraction from satellite images", Geo-spatial Inform. Sci., 20, 345-352. https://doi.org/10.1080/10095020.2017.1403089
  39. Safari Bilouei, B., Kolahchi, R. and Rabanibidgoli, M. (2016), "Buckling of concrete columns retrofitted with Nano-Fiber Reinforced Polymer (NFRP)", Comput. Concrete, 18(5), 1053-1063. https://doi.org/10.12989/cac.2016.18.5.1053
  40. Semler, C., Lopes, J.L., Augu, N. and Paidoussis, M.P. (2002), "Linear and nonlinear dynamics of cantilevered cylinders in axial flow part 3: nonlinear dynamics", J. Fluid Struct., 16, 739-759. https://doi.org/10.1006/jfls.2002.0445
  41. Shamsuddoha, M., Islam, M.M., Aravinthan, T., Manalo, A. and Lau, K.T. (2013), "Effectiveness of using fibre-reinforced polymer composites for underwater steel pipeline repairs", Compos. Struct., 100, 40-54. https://doi.org/10.1016/j.compstruct.2012.12.019
  42. Shokravi M. (2017), "Vibration analysis of silica nanoparticles-reinforced concrete beams considering agglomeration effects", Comput. Concrete, 19(3), 333-338. https://doi.org/10.12989/cac.2017.19.3.333
  43. Simsek, M. (2010), "Non-linear vibration analysis of a functionally graded Timoshenko beam under action of a moving harmonic load", Compos. Struct., 92, 2532-2546. https://doi.org/10.1016/j.compstruct.2010.02.008
  44. Su, Y., Li, J., Wu, C and Li, Z.X. (2016), "Influences of nanoparticles on dynamic strength of ultra-high performance concrete", Compos. Part B-Eng., 91, 595-609. https://doi.org/10.1016/j.compositesb.2016.01.044
  45. Thinh, T.I. and Nguyen, M.C. (2016), "Dynamic stiffness method for free vibration of composite cylindrical shells containing fluid", Appl. Math. Model., 40, 9286-9301. https://doi.org/10.1016/j.apm.2016.06.015
  46. Torres-Jimenez, J. and Rodriguez-Cristerna, A. (2017), "Metaheuristic post-optimization of the NIST repository of covering arrays", CAAI Trans. Intell. Technol., 2, 31-38. https://doi.org/10.1016/j.trit.2016.12.006
  47. Wadham-Gagnon, M., Paidoussis, M.P. and Semler, C. (2007), "Dynamics of cantilevered pipes conveying fluid part 1: nonlinear equations of three-dimentional motion", J. Fluid Struct., 23, 545-67. https://doi.org/10.1016/j.jfluidstructs.2006.10.006
  48. Wen, Q., He, J., Guan, Sh., Chen, T., Hu, Y., Wu, W., Liu, F., Qiao, Y. (2017), "The TripleSat constellation: a new geospatial data service model", Geo-spatial Inform. Sci., 20, 163-173. https://doi.org/10.1080/10095020.2017.1329266
  49. Yang, H. and Yu, L. (2017), "Feature extraction of wood-hole defects using wavelet-based ultrasonic testing", J. Forest. Res., 28, 395-402. https://doi.org/10.1007/s11676-016-0297-z
  50. Yoon, H.I. and Son, I. (2007), "Dynamic response of rotating flexible cantilever fluid with tip mass", Int. J. Mech. Sci., 49, 878-887. https://doi.org/10.1016/j.ijmecsci.2006.11.006
  51. ZamaniNouri, A. (2017), "Mathematical modeling of concrete pipes reinforced with CNTs conveying fluid for vibration and stability analyses", Comput. Concrete, 19(3), 325-331. https://doi.org/10.12989/cac.2017.19.3.325
  52. Zhai, H., Wu, Z., Liu, Y. and Yue, Z. (2011), "Dynamic response of pipeline conveying fluid to random excitation", Nucl. Eng. Des., 241, 2744-2749. https://doi.org/10.1016/j.nucengdes.2011.06.024
  53. Zhao, B., Gao, L., Liao, W. and Zhang, B. (2017), "A new kernel method for hyperspectral image feature extraction", Geo-spatial Inform. Sci., 20, 309-318. https://doi.org/10.1080/10095020.2017.1403088
  54. Zhou, X.Q., YU, D.Y., Shao, X.Y., Zhang, C.Y. and Wang, S. (2017), "Dynamics characteristic of steady fluid conveying in the periodical partially viscoelastic composite pipeline", Compos. Part B-Eng., 111, 387-408. https://doi.org/10.1016/j.compositesb.2016.11.059