• Title/Summary/Keyword: Materials science and engineering

Search Result 16,348, Processing Time 0.05 seconds

Change in Microstructure with the Gas Quenching Rate during Austempering Treatment of SAE 1078 Steel (SAE 1078 강의 오스템퍼링 열처리시 가스 퀜칭 속도에 따른 미세조직의 변화)

  • Gi-Hoon Kwon;Hyunjun Park;Kuk-Hyun Yeo;Young-Kook Lee;Sang-Gweon Kim
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.3
    • /
    • pp.121-127
    • /
    • 2023
  • When high carbon steel is heated in an appropriate austenizing temperature range and subjected to austempering, the size and shape of lamellar structure can be controlled. The high carbon steel sheet having the pearlite structure has excellent elastic characteristics because it has strong restoring force when properly rolled, and is applied in a process known as patenting-process using lead bath. In the case of isothermal treatment using lead-medium, it is possible to quickly reach a uniform temperature due to high heat transfer characteristics, but it is difficult to replace it with process technology that requires treatment to remove harmfulness lead. In this study, we intend to develop fluidization technology using garnet powder to replace the lead medium. After heating the high-carbon steel, the cooling rate was changed by compressed air to the vicinity of the nose of the continuous cooling curve, and then maintained for 90 s and then exposed to room temperature. The microstructure of the treated specimens were analyzed and compared with the existing products treated with lead bath. The higher the flow rate of compressed air, the faster the cooling rate to the pearlite transformation temperature, so lamellar spacing decreases and the hardness tends to increase.

A Clinical Study of InGaAlP Laser Transcutaneous Blood Irradiation on Heart Rate Variability in Healthy Adults (II) (InGaAlP 레이저 경피혈액조사가 정상성인의 심박변이도에 미치는 영향에 대한 임상적 연구(II))

  • Yeo, Jinju;Lee, Taeho;Son, Donghyuk;Hsing, Lichang;Lee, Inhwan;Jang, Insoo
    • The Journal of the Society of Stroke on Korean Medicine
    • /
    • v.6 no.1
    • /
    • pp.9-16
    • /
    • 2005
  • Objective : The heart rate variability is very useful indicator to study the function of the autonomic nervous system(ANS), and the physiologic signals can be observed based on the changes of the ANS of the heart. In order to assay the effects of the laser exposing to healthy subjects, the double blind test has been performed. Methods : This study included 62 healthy adults who have not any ANS disease and had normal sinus rhythm in electrocardiogram. The control group consisted of 31 subjects, laser group consisted of 31 subject. HRV was measured for 5 minutes before laser irradiation, sham and real laser irradiated for 30 minutes and than HRV remeasured for 5 minutes. Statistical significance was evaluated by independent T-test. Results : Mean HRV, Ln(VLF), Ln(HF), Ln(TP) of both groups at post-laser period decreased compared with that of the pre-laser period. Ln(LF) of both groups at post-laser period increased compared with that of the pre-laser period. LF/HF, SDNN of real laser group decreased and sham group decreased. Conclusions : There is no difference between two groups. The reason is presumed that all the studied subjects are healthy adults, and also the short and single transcutaneous laser irradiation would not influence upon changes of the ANS. The further study must be followed.

  • PDF

Optimizing User Experience While Interacting with IR Systems in Big Data Environments

  • Minsoo Park
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.104-110
    • /
    • 2023
  • In the user-centered design paradigm, information systems are created entirely tailored to the users who will use them. When the functions of a complex system meet a simple user interface, users can use the system conveniently. While web personalization services are emerging as a major trend in portal services, portal companies are competing for a second service, such as introducing 'integrated communication platforms'. Until now, the role of the portal has been content and search, but this time, the goal is to create and provide the personalized services that users want through a single platform. Personalization service is a login-based cloud computing service. It has the characteristic of being able to enjoy the same experience at any time in any space with internet access. Personalized web services like this have the advantage of attracting highly loyal users, making them a new service trend that portal companies are paying attention to. Researchers spend a lot of time collecting research-related information by accessing multiple information sources. There is a need to automatically build interest information profiles for each researcher based on personal presentation materials (papers, research projects, patents). There is a need to provide an advanced customized information service that regularly provides the latest information matched with various information sources. Continuous modification and supplementation of each researcher's information profile of interest is the most important factor in increasing suitability when searching for information. As researchers' interest in unstructured information such as technology markets and research trends is gradually increasing from standardized academic information such as patents, it is necessary to expand information sources such as cutting-edge technology markets and research trends. Through this, it is possible to shorten the time required to search and obtain the latest information for research purposes. The interest information profile for each researcher that has already been established can be used in the future to determine the degree of relationship between researchers and to build a database. If this customized information service continues to be provided, it will be useful for research activities.

Artificial intelligence design for dependence of size surface effects on advanced nanoplates through theoretical framework

  • Na Tang;Canlin Zhang;Zh. Yuan;A. Yvaz
    • Steel and Composite Structures
    • /
    • v.52 no.6
    • /
    • pp.621-626
    • /
    • 2024
  • The work researched the application of artificial intelligence to the design and analysis of advanced nanoplates, with a particular emphasis on size and surface effects. Employing an integrated theoretical framework, this study developed a more accurate model of complex nanoplate behavior. The following analysis considers nanoplates embedded in a Pasternak viscoelastic fractional foundation and represents the important step in understanding how nanoscale structures may respond under dynamic loads. Surface effects, significant for nanoscale, are included through the Gurtin-Murdoch theory in order to better describe the influence of surface stresses on the overall behavior of nanoplates. In the present analysis, the modified couple stress theory is utilized to capture the size-dependent behavior of nanoplates, while the Kelvin-Voigt model has been incorporated to realistically simulate the structural damping and energy dissipation. This paper will take a holistic approach in using sinusoidal shear deformation theory for the accurate replication of complex interactions within the nano-structure system. Addressing different aspectsof the dynamic behavior by considering the length scale parameter of the material, this work aims at establishing which one of the factors imposes the most influence on the nanostructure response. Besides, the surface stresses that become increasingly critical in nanoscale dimensions are considered in depth. AI algorithms subsequently improve the prediction of the mechanical response by incorporating other phenomena, including surface energy, material inhomogeneity, and size-dependent properties. In these AI- enhanced solutions, the improvement of precision becomes considerable compared to the classical solution methods and hence offers new insights into the mechanical performance of nanoplates when applied in nanotechnology and materials science.

Application of Isolated Tyrosinase Inhibitory Compounds from Persimmon Leaves (감나무 잎으로 부터 분리한 tyrosinase 억제물질의 응용)

  • Cho, Young-Je;An, Bong-Jeun;Kim, Jeung-Hoan
    • Journal of Life Science
    • /
    • v.21 no.7
    • /
    • pp.976-984
    • /
    • 2011
  • Total phenolic content was the highest in 60% ethanol extracts at 21.91 mg/g, and inhibitory activity against tyrosinase of 60% ethanol extracts was higher than ethanol extracts of other concentration. The inhibitory compounds against tyrosinase from Persimmon leaves were purified using Sephadex LH-20, MCI-gel CHP-20 column chromatography with gradient elution. Two purified compounds were isolated as a result. The chemical structures of each compound were determined and identified using $^1H$-NMR and $^{13}C$-NMR, FAB-Mass. The compounds were confirmed as (+)-gallocatechin and prodelphinidin B-3. The tyrosinase inhibitory activities of purified (+)-gallocatechin and prodelphinidin B-3 were 29.5 and 40.2%, respectively. The inhibitory activities of (+)-gallocatechin and prodelphinidin B-3 against melanin biosynthesis in melanoma cell were 32.5 and 46.7%. The safety of essence with tyrosinase inhibitory compounds from persimmon leaves was also assessed by various safety profiles. First, changes in pH (4.90~4.95) and viscosity (23,000~26,000 cP) was not detected for 60 days. Essence also showed stability against temperature and light for 60 days. All these findings suggest that extracts from persimmon leaves have a great potential as a cosmetical ingredient with a potent whitening effect.

Bonding Properties and Resin Exudation Characteristics of Pitch Pine (리기다소나무재의 수지 삼출성과 접착 특성)

  • Roh, JeongKwan;Kim, Yun Geun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.3
    • /
    • pp.213-220
    • /
    • 2018
  • In order to use Pitch pine (Pinus rigida Miller) as the material of the structural glued laminated timber, the effect of the amount of resin exudation due to storage time after the planning and the knot of the lamina were evaluated on the bonding properties of the glued board with resorcinol resin. For Pitch pine that was dried at high temperature ($120{\sim}95^{\circ}C$) and low temperature ($65{\sim}50^{\circ}C$), the flat sawn(tangential section) showed higher amount of resin exudation than the quarter sawn(radial section). And the low temperature drying wood showed higher resin exudation than the high temperature drying wood. The low and high temperature drying wood showed the highest amount of resin exudation on the 3rd day and 7th day, respectively and they were gradually decreased. However, there were no significant differences from 15 to 90 days. Adhesion performances were low until 2~3 days with high exudation of resin, but there were no significant differences after 15 days. Both high temperature and low temperature drying woods satisfied the Korean standard regardless of the storage time. The adhesive strengths of the laminating parts including knots were higher than those of KS criteria, but the wood failures were not satisfied the KS standard. Adhesive performances according to the laminating combinations (quarter sawn + quarter sawn, flat sawn + flat sawn, quarter sawn + flat sawn) were better than those of KS criteria in all laminating combinations in both high temperature and low temperature drying woods.

Assessment of Bio-corrosive Effect and Determination of Controlling Targets among Microflora for Application of Multi-functional CFB on Cement Structure (다기능 탄산칼슘 형성세균의 시멘트 건축물 적용위한 부식능 평가 및 건축물 정주미생물 중 방제 대상 결정)

  • Park, Jong-Myong;Park, Sung-Jin;Ghim, Sa-Youl
    • Journal of Life Science
    • /
    • v.25 no.2
    • /
    • pp.237-242
    • /
    • 2015
  • The use of calcite-forming bacteria (CFB) in crack remediation and durability improvements in construction materials creates a permanent and environmentally-friendly material. Therefore, research into this type of application is stimulating interdisciplinary studies between microbiology and architectural engineering. However, the mechanisms giving rise to these materials are dependent on calcite precipitation by the metabolism of the CFB, which raises concerns about possible hazards to cement-based construction due to microbial metabolic acid production. The aim of this study was to determine target microorganisms that possibly can have bio-corrosive effects on cement mortar and to assess multi-functional CFBs for their safe application to cement structures. The chalky test was first used to evaluate the $CaCO_3$ solubilization feature of construction sites by fungi, yeast, bacterial strains. Not all bacterial strains are able to solubilize $CaCO_3$, but C. sphaerospermum KNUC253 or P. prolifica KNUC263 showed $CaCO_3$ solubilization activity. Therefore, these two strains were identified as target microorganisms that require control in cement structures. The registered patented strains Bacillus aryabhatti KNUC205, Arthrobacter nicotianae KNUC2100, B. thuringiensis KNUC2103 and Stenotrophomonas maltophilia KNUC2106, reported as multifunctional CFB (fungal growth inhibition, crack remediation, and water permeability reduction of cement surfaces) and isolated from Dokdo or construction site were unable to solubilize $CaCO_3$. Notably, B. aryabhatti KNUC205 and A. nicotianae KNUC2100 could not hydrolyze cellulose or protein, which can be the major constituent macromolecules of internal materials for buildings. These results show that several reported multi-functional CFB can be applied to cement structures or diverse building environments without corrosive or bio-deteriorative risks.

Comparison of characteristics of silver-grid transparent conductive electrodes for display devices according to fabrication method (제조공법에 따른 디스플레이 소자용 silver-grid 투명전극층의 특성 비교)

  • Choi, Byoung Su;Choi, Seok Hwan;Ryu, Jeong Ho;Cho, Hyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.2
    • /
    • pp.75-79
    • /
    • 2017
  • Honeycomb-shaped Ag-grid transparent conductive electrodes (TCEs) were fabricated using two different processes, high density plasma etching and lift-off, and the optical and electrical properties were compared according to the fabrication method. For the fabrication of the Ag-grid TCEs by plasma etching, etch characteristics of the Ag thin film in $10CF_4/5Ar$ inductively coupled plasma (ICP) discharges were studied. The Ag etch rate increased as the power increased at relatively low ICP source power or rf chuck power conditions, and then decreased at higher powers due to either decrease in $Ar^+$ ion energy or $Ar^+$ ion-assisted removal of the reactive F radicals. The Ag-grid TCEs fabricated by the $10CF_4/5Ar$ ICP etching process showed better grid pattern transfer efficiency without any distortion or breakage in the grid pattern and higher optical transmittance values of average 83.3 % (pixel size $30{\mu}m/line$ width $5{\mu}m$) and 71 % (pixel size $26{\mu}m/line$ width $8{\mu}m$) in the visible range of spectrum, respectively. On the other hand, the Ag-grid TCEs fabricated by the lift-off process showed lower sheet resistance values of $2.163{\Omega}/{\square}$ (pixel size $26{\mu}m/line$ width $18{\mu}m$) and $4.932{\Omega}/{\square}$ (pixel size $30{\mu}m/line$ width $5{\mu}m$), respectively.

Synthesis of thermoelectric Mg3Sb2 by melting and mechanical alloying (용융법과 기계적 합금화에 의한 열전재료 Mg3Sb2의 제조)

  • Kim, In-Ki
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.4
    • /
    • pp.207-212
    • /
    • 2012
  • A single phase $Mg_3Sb_2$ alloy was synthesized by melting the mixture of Mg and Sb metal powders at 1173 K. The figure of merit of the $Mg_3Sb_2$ prepared by melting method increased with temperature and showed a value of $2.39{\times}10^{-2}$ at 593 K. When the $Mg_3Sb_2$ powders were milled at high speed in a planetary ball mill for 12~48 h, Zintle phase ($Mg_3Sb_2$) was maintained as a main phase, but its crystallinity became deteriorated and elemental Sb phase appeared. Sb phase free $Mg_3Sb_2$ could be obtained by the mechanical alloying of high speed ball milling for 24 h using elemental Mg and Sb powder mixtures.

Improvement of Seawater Corrosion Resistance of Concrete Reinforcing Steel Using by Conductive Photocatalyst (전도성 광촉매를 이용한 콘크리트 철근의 염해 내구성 향상에 관한 연구)

  • Bae, Geun-Guk;Bae, Geun-Woo;Ahn, Yong-Sik
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.2
    • /
    • pp.152-159
    • /
    • 2017
  • In marine environment, the durability of concrete and reinforcing steel is known to be deteriorate by the permeation of chloride ion into concrete. In this study the conductive photocatalyst was used to improve the seawater corrosion resistance of the concrete and steel. Mortar and concrete samples were prepared by mixing with various amounts of conductive active carbon and photocatalytic powder($TiO_2$). The compressive strength of concrete was decreased with the increase of the amount of conductive carbon powders. The samples containing conductive carbon and photocatalytic powders showed the superior seawater corrosion resistance compared with the ordinary sample, which was verified by XRF analysis showing the concentration of chloride ion($Cl^-$) of mortars and concretes. The inhibitive effect of photocatalyst against chloride attack was discussed with the diffusion coefficient of chloride ion into mortar and concrete.