Browse > Article
http://dx.doi.org/10.5352/JLS.2015.25.2.237

Assessment of Bio-corrosive Effect and Determination of Controlling Targets among Microflora for Application of Multi-functional CFB on Cement Structure  

Park, Jong-Myong (School of Life Sciences, Kyungpook National University)
Park, Sung-Jin (Institute for Microorganisms, Kyungpook National University)
Ghim, Sa-Youl (Research Institute for Ulleungdo & Dokdo Islands, Kyungpook National University)
Publication Information
Journal of Life Science / v.25, no.2, 2015 , pp. 237-242 More about this Journal
Abstract
The use of calcite-forming bacteria (CFB) in crack remediation and durability improvements in construction materials creates a permanent and environmentally-friendly material. Therefore, research into this type of application is stimulating interdisciplinary studies between microbiology and architectural engineering. However, the mechanisms giving rise to these materials are dependent on calcite precipitation by the metabolism of the CFB, which raises concerns about possible hazards to cement-based construction due to microbial metabolic acid production. The aim of this study was to determine target microorganisms that possibly can have bio-corrosive effects on cement mortar and to assess multi-functional CFBs for their safe application to cement structures. The chalky test was first used to evaluate the $CaCO_3$ solubilization feature of construction sites by fungi, yeast, bacterial strains. Not all bacterial strains are able to solubilize $CaCO_3$, but C. sphaerospermum KNUC253 or P. prolifica KNUC263 showed $CaCO_3$ solubilization activity. Therefore, these two strains were identified as target microorganisms that require control in cement structures. The registered patented strains Bacillus aryabhatti KNUC205, Arthrobacter nicotianae KNUC2100, B. thuringiensis KNUC2103 and Stenotrophomonas maltophilia KNUC2106, reported as multifunctional CFB (fungal growth inhibition, crack remediation, and water permeability reduction of cement surfaces) and isolated from Dokdo or construction site were unable to solubilize $CaCO_3$. Notably, B. aryabhatti KNUC205 and A. nicotianae KNUC2100 could not hydrolyze cellulose or protein, which can be the major constituent macromolecules of internal materials for buildings. These results show that several reported multi-functional CFB can be applied to cement structures or diverse building environments without corrosive or bio-deteriorative risks.
Keywords
Bio-deterioration; $CaCO_3$ solubilization; cement mortar; calcite-forming bacteria (CFB); microbially induced $CaCO_3$ precipitation (MICP);
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Nica, D., Davis, J. L., Kirby, L., Zuo, G. and Roberts, D. J. 2000. Isolation and characterization of microorganisms involved in the biodeterioration of concrete in sewers. Int. Biodeterior. Biodegradation 46, 61-68.   DOI
2 Nolan, E., Basheer, P. A. M. and Long, A. E. 1995. Effects of three durability enhancing products on some physical properties of near surface concrete. Constr. Build. Mater. 9, 267-272.   DOI
3 Pangallo, D., Chovanová, K., Simonovicová, A. and Ferianc, P. 2009. Investigation of microbial community isolated from indoor artworks and air environment: identification, biodegradative abilities, and DNA typing. Can. J. Microbiol. 55, 277-287.   DOI
4 Park, J. M., Park, S. J. and Ghim, S. Y. 2011. Isolation of fungal deteriogens inducing aesthetical problems and antifungal calcite forming bacteria from the tunnel and their characteristics. Kor. J. Microbiol. Biotechnol. 39, 287-293.
5 Park, S. J., Lee, N. Y., Kim, W. J. and Ghim, S. Y. 2010. Application of bacteria isolated from Dokdo for improving compressive strength and crack remediation of cement-sand mortar. J. Microbiol. Biotechnol. 20, 782-788.
6 Park, S. J., Park, Y. M., Chun, W. Y., Kim, W. J. and Ghim, S. Y. 2010. Calcite-forming bacteria for compressive strength improvement in mortar. J. Microbiol. Biotechnol. 20, 782-788.
7 Park, S. J., Park, J. M., Kim, W. J. and Ghim, S. Y. 2012. Application of Bacillus subtilis 168 as a multifunctional agent for improvement of the durability of cement mortar. J. Microbiol. Biotechnol. 22, 1568-1574.   DOI
8 Park, J. M., Park, S. J., Kim, W. J. and Ghim, S. Y. 2012. Application of antifungal CFB to increase the durability of cement mortar. J. Microbiol. Biotechnol. 22, 1015-1020.   DOI
9 Park, J. M., Park, S. J. and Ghim, S. Y. 2012. Arthrobacter nicotianae KNUC2100 and a cement additive for durability improvement and crack reparing of cement paste or concrete containing the same. Korea patent 10-2012-0027945.
10 Park, J. M., Park, S. J. and Ghim, S. Y. 2012. Bacillus aryabhattai KNUC205 and a cement additive for durability improvement and crack reparing of cement paste or concrete containing the same. Korea patent 10-2012-0019787.
11 Park, J. M., Park, S. J. and Ghim, S. Y. 2012. Bacillus thuringiensis KNUC2103 and a cement additive for durability improvement and crack reparing of cement paste or concrete containing the same. Korea patent 10-2012-0027951.
12 Park, J. M., Park, S. J. and Ghim, S. Y. 2012. Stenotrophomonas maltophila KNUC2106 and a cement additive for durability improvement and crack reparing of cement paste or concrete containing the same. Korea patent 10-2012-0027940.
13 Park, S. K., Kim, J. H. J., Nam, J. W., Phan, H. D. and Kim, J. K. 2009. Development of anti-fungal mortar and concrete using Zeolite and Zeocarbon microcapsules. Cem. Concr. Compo. 31, 447-453.   DOI
14 Ramacjandran, S. K., Ramakrishnan, V. and Bang, S. S. 2001. Remediation of concrete using microorganism. ACI Mater. 98, 3-9.
15 Schultze-Lam, S., Fortin, D., Davis, B. S. and Beveridge, T. J. 1996. Mineralization of bacterial surfaces. Chem. Geol. 132, 171-181.   DOI
16 Sofía, B., Lavin, P., Perdomo, I., Saravia, S. G. D. and Guiamet, P. 2012. Determination of indoor air quality in archives and biodeterioration of the documentary heritage. ISRN Microbiol. 10, 1-10
17 Tiano, P., Biagiotti, L. and Mastromei, G. 1999. Bacterial bio-mediated calcite precipitation for monumental stones conservation: methods of evaluation. J. Microbiol. Methods 36, 139-145.   DOI
18 Stocks-Fischer, S., Galinat, J. K. and Bang, S. S. 1999. Microbiological precipitation of $CaCO_3$. Soil Biol. Biochem. 31, 1563-1571.   DOI
19 Teather, R. M. and Wood, P. J. 1982. Use of Congo red polysaccharide interactions complex formation between Congo red and polysaccharide in detection and assay of polysaccharide hydrolases. Meth. Enzymol. 160, 59-74.
20 Warscheid, Th. and Braams, J. 2010. Biodeterioration of stone: a review. Int. Biodeterior. Biodegradation 46, 343-368.
21 Tittelboom, K. V., Belie, N. D., Muynck, W. D. and Verstraete, W. 2010. Use of bacteria to repair cracks in concrete. Cem. Concr. Res. 40, 157-166.   DOI
22 Muynck, W. D., Belle, N. D. and Verstraete, W. 2010. Antimicrobial mortar surface for the improvement of hygienic conditions. J. Appl. Microbiol. 108, 62-72.   DOI
23 Achal, V., Mukherjee, A., Basu, P. C. and Reddy, M. S. 2009. Strain improvement of Sporosarcina pasteurii for enhanced urease and calcite production. J. Ind. Microbiol. Biotechnol. 36, 981-988.   DOI
24 Ascaso, C., Wierzchos, J. and Castello, R. 1998. Study of the biogenic weathering of calcereous litharenite stones caused by lichen and endolithic microorganisms. Int. Biodeterior. Biodegradation 42, 29-38.   DOI
25 Boquet, E., Boronat, A. and Ramos-Cormenzana, A. 1973. Production of calcite (calcium carbonate) crystals by soil bacteria is a general phenomenon. Nature 246, 527-529.   DOI
26 Muynck, W. D., Belie, N. D. and Verstraete, W. 2010. Microbial carbonate precipitation in construction materials: a review. Ecol. Eng. 36, 118-136.   DOI
27 Ghosh, S., Biswas, M., Chattopadhyay, B. D. and Mandal, S. 2009. Microbial activity on the microstructure of bacteria modified mortar. Cem. Concr. Comp. 31, 93-98.   DOI
28 Diakumaku, E., Gorbushin, A. A., Krumbein, W. E., Panina, L. and Soukharjevski, S. 1995. Black fungi in marble and limestones-an aesthetical, chemical and physical problem for the conservation of monuments. Sci. Total Environ. 167, 295-304.   DOI
29 Do, J. G., Song, H., So, H. S. and Soh, Y. S. 2005. Antifungal effects of cement mortar with two types of organic antifungal agents. Cem. Concr. Res. 35, 371-376.   DOI
30 Ghosh, P., Mandal, S., Chattopadhyay, B. D. and Pal, S. 2005. Use of microorganism to improve the strength of cement mortar. Cem. Concr. Res. 35, 1980-1983.   DOI
31 Gu, J. D., Ford, T. E., Berke, N. S. and Mitchell, R. 1998. Biodeterioration of concrete by the fungus Fusarium. Int. Biodeterior. Biodegradation 41, 101-109.   DOI
32 Hammes, F., Boon, N., Villiers, J. D., Verstraete, W. and Siciliano, S. D. 2003. Strain-specific ureolytic microbial calcium carbonate precipitation. Appl. Environ. Microbiol. 69, 4901-4909.   DOI
33 Jonkers, H. M., Thijssen, A., Muyzer, G., Copuroglu, O. and Schlangena, E. 2010. Application of bacteria as self-healing agent for the development of sustainable concrete. Ecol. Eng. 36, 230-235.   DOI
34 Min, S. G., Kim, J. H., Kim, T. W. and Kim, K. N. 2003. Isolation and identification of protease producing bacteria in kimchi. Kor. J. Food Sci. Technol. 35, 666-670.