• Title/Summary/Keyword: Matching prior

Search Result 155, Processing Time 0.019 seconds

Noninformative priors for linear combinations of exponential means

  • Lee, Woo Dong;Kim, Dal Ho;Kang, Sang Gil
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.2
    • /
    • pp.565-575
    • /
    • 2016
  • In this paper, we develop the noninformative priors for the linear combinations of means in the exponential distributions. We develop the matching priors and the reference priors. The matching priors, the reference prior and Jeffreys' prior for the linear combinations of means are developed. It turns out that the reference prior and Jeffreys' prior are not a matching prior. We show that the proposed matching prior matches the target coverage probabilities much more accurately than the reference prior and Jeffreys' prior in a frequentist sense through simulation study, and an example based on real data is given.

NONINFORMATIVE PRIORS FOR PARETO DISTRIBUTION : REGULAR CASE

  • Kim, Dal-Ho;Lee, Woo-Dong;Kang, Sang-Gil
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.27-37
    • /
    • 2003
  • In this paper, we develop noninformative priors for two parameter Pareto distribution. Specially, we derive Jeffrey's prior, probability matching prior and reference prior for the parameter of interest. In our case, the probability matching prior is only a first order and there does not exist a second order matching prior. Some simulation reveals that the matching prior performs better to achieve the coverage probability. And a real example will be given.

  • PDF

Noninformative priors for stress-strength reliability in the Pareto distributions

  • Kang, Sang-Gil;Kim, Dal-Ho;Lee, Woo-Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.1
    • /
    • pp.115-123
    • /
    • 2011
  • In this paper, we develop the noninformative priors for stress-strength reliability from the Pareto distributions. We develop the matching priors and the reference priors. It turns out that the second order matching prior does not match the alternative coverage probabilities, and is not a highest posterior density matching or a cumelative distribution function matching priors. Also we reveal that the one-at-a-time reference prior and Jeffreys' prior are the second order matching prior. We show that the proposed reference prior matches the target coverage probabilities in a frequentist sense through simulation study, and an example is given.

Noninformative priors for product of exponential means

  • Kang, Sang Gil;Kim, Dal Ho;Lee, Woo Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.3
    • /
    • pp.763-772
    • /
    • 2015
  • In this paper, we develop the noninformative priors for the product of different powers of k means in the exponential distribution. We developed the first and second order matching priors. It turns out that the second order matching prior matches the alternative coverage probabilities, and is the highest posterior density matching prior. Also we revealed that the derived reference prior is the second order matching prior, and Jeffreys' prior and reference prior are the same. We showed that the proposed reference prior matches very well the target coverage probabilities in a frequentist sense through simulation study, and an example based on real data is given.

Noninformative priors for the ratio of the scale parameters in the half logistic distributions

  • Kang, Sang-Gil;Kim, Dal-Ho;Lee, Woo-Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.4
    • /
    • pp.833-841
    • /
    • 2012
  • In this paper, we develop the noninformative priors for the ratio of the scale parameters in the half logistic distributions. We develop the first and second order matching priors. It turns out that the second order matching prior matches the alternative coverage probabilities, and is a highest posterior density matching prior. Also we reveal that the one-at-a-time reference prior and Jeffreys' prior are the second order matching prior. We show that the proposed reference prior matches the target coverage probabilities in a frequentist sense through simulation study, and an example based on real data is given.

Noninformative Priors for the Common Shape Parameter in the Gamma Distributions

  • Kang, Sang-Gil;Kim, Dal-Ho;Lee, Woo-Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.1
    • /
    • pp.247-257
    • /
    • 2007
  • In this paper, we develop the noninformative priors for the common shape parameter in the gamma distributions. We develop the matching priors and reveal that the second order matching prior does not exist. It turns out that the one-at-a-time reference prior and the two group reference prior satisfy a first order probability matching criterion. Some simulation study is peformed.

  • PDF

Noninformative priors for the reliability function of two-parameter exponential distribution

  • Kang, Sang-Gil;Kim, Dal-Ho;Lee, Woo-Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.2
    • /
    • pp.361-369
    • /
    • 2011
  • In this paper, we develop the reference and the matching priors for the reliability function of two-parameter exponential distribution. We derive the reference priors and the matching prior, and prove the propriety of joint posterior distribution under the general prior including the reference priors and the matching prior. Through the sim-ulation study, we show that the proposed reference priors match the target coverage probabilities in a frequentist sense.

Noninformative priors for the common shape parameter of several inverse Gaussian distributions

  • Kang, Sang Gil;Kim, Dal Ho;Lee, Woo Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.1
    • /
    • pp.243-253
    • /
    • 2015
  • In this paper, we develop the noninformative priors for the common shape parameter of several inverse Gaussian distributions. Specially, we want to develop noninformative priors which satisfy certain objective criterion. The probability matching priors and reference priors of the common shape parameter will be developed. It turns out that the second order matching prior does not exist. The reference priors satisfy the first order matching criterion, but Jeffrey's prior is not the first order matching prior. We showed that the proposed reference prior matches the target coverage probabilities in a frequentist sense through simulation study, and an example based on real data is given.

Noninformative priors for the shape parameter in the generalized Pareto distribution

  • Kang, Sang Gil;Kim, Dal Ho;Lee, Woo Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.1
    • /
    • pp.171-178
    • /
    • 2013
  • In this paper, we develop noninformative priors for the generalized Pareto distribution when the parameter of interest is the shape parameter. We developed the first order and the second order matching priors.We revealed that the second order matching prior does not exist. It turns out that the reference prior satisfies a first order matching criterion, but Jeffrey's prior is not a first order matching prior. Some simulation study is performed and a real example is given.

On the Development of Probability Matching Priors for Non-regular Pareto Distribution

  • Lee, Woo Dong;Kang, Sang Gil;Cho, Jang Sik
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.2
    • /
    • pp.333-339
    • /
    • 2003
  • In this paper, we develop the probability matching priors for the parameters of non-regular Pareto distribution. We prove the propriety of joint posterior distribution induced by probability matching priors. Through the simulation study, we show that the proposed probability matching Prior matches the coverage probabilities in a frequentist sense. A real data example is given.