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Abstract

In this paper, we develop the noninformative priors for the ratio of the scale param-
eters in the half logistic distributions. We develop the first and second order matching
priors. It turns out that the second order matching prior matches the alternative cov-
erage probabilities, and is a highest posterior density matching prior. Also we reveal
that the one-at-a-time reference prior and Jeffreys’ prior are the second order matching
prior. We show that the proposed reference prior matches the target coverage proba-
bilities in a frequentist sense through simulation study, and an example based on real
data is given.

Keywords: Half logistic distribution, matching prior, reference prior, scale parameter.

1. Introduction

The half logistic distribution was introduced by Balakrishnan (1985) as a life testing model
with increasing hazard rate. Balakrishnan and Puthenpura (1986) obtained the coefficient of
the best linear unbiased estimators for the location and scale parameters based on complete
and censored samples. Balakrishnan and Wong (1991) obtained the approximate maximum
likelihood estimators for the location and scale parameters. Adatia (1997) derived the ap-
proximate best linear unbiased estimators of the parameters. Kang and Park (2005) derived
the approximate maximum likelihood estimators of the scale parameter based on multiply
type-II censored samples. Kim and Han (2010) obtained the maximum likelihood estima-
tor and Bayes estimator for the scale parameter of the half-logistic distribution based on
a progressively type II censored sample assuming a natural conjugate prior. However the
problem of comparison of two scale parameters has not been considered yet. Thus we want
to develop noninformative priors for inference of the ratio of two scale parameters.

Subjective priors are ideal when sufficient information from past experience, expert opinion
or previously collected data exist. However, often even without adequate prior information,
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one can use Bayesian techniques efficiently with some noninformative or default priors. Once
a noninformative prior is developed, then there is no necessity for exploring the effect of hyper
parameters.

The notion of a noninformative prior has attracted much attention in recent years. There
are two different notions of noninformative priors. One is a probability matching prior intro-
duced by Welch and Peers (1963) which matches the posterior and frequentist probabilities
of confidence intervals. Interest in such priors has been revived with the work of Stein (1985)
and Tibshirani (1989). Among others, we may cite the work of Mukerjee and Dey (1993),
DiCiccio and Stern (1994), Datta and Ghosh (1995a,b, 1996), Mukerjee and Ghosh (1997).

The other is the reference prior introduced by Bernardo (1979) which maximizes the
Kullback-Leibler divergence between the prior and the posterior. Ghosh and Mukerjee (1992),
and Berger and Bernardo (1989,1992) give a general algorithm to derive a reference prior
by splitting the parameters into several groups according to their order of inferential impor-
tance. This approach is very successful in various practical problems (Kang, 2011; Kim et
al., 2009). Quite often reference priors satisfy the matching criterion described earlier.

The outline of the remaining sections is as follows. In Section 2, we develop first order and
second order probability matching priors. We reveal that the second order matching prior
is a highest posterior density (HPD) matching prior or matches the alternative coverage
probabilities up to the second order. Also we derive the reference priors for the parameter.
It turns out that the one-at-a-time reference prior and Jeffreys’ prior are the second order
matching prior. Section 3 devotes to show that the propriety of the posterior distribution
for the general prior including the reference prior and the matching prior. In Section 4,
simulated frequentist coverage probabilities under the proposed prior and an example are
given.

2. The noninformative priors

Suppose that X and Y are independently distributed random variables according to the
half-logistic distribution HL(σ1) with the scale parameter σ1, and the half-logistic distri-
bution HL(σ2) with the scale parameter σ2. Then the probability density functions of half
logistic distributions of X and Y are given by

f(x|σ1) =
2

σ1

exp {−x/σ1}
[1 + exp {−x/σ1}]2

, x ≥ 0, σ1 > 0, (2.1)

and

f(y|σ2) =
2

σ2

exp {−y/σ2}
[1 + exp {−y/σ2}]2

, y ≥ 0, σ2 > 0, (2.2)

respectively.
Let X1, X2, · · · , Xn1

be a random sample of size n1 from HL(σ1) and Y1, Y2, · · · , Yn2

be a random sample of size n2 from HL(σ2), respectively. Let x = (x1, x2, · · · , xn1
) be

observations of X1, X2, · · · , Xn1
and y = (y1, y2, · · · , yn2

) be observations of Y1, Y2, · · · , Yn2
,

respectively. We want to make a Bayesian inference about the ratio of scale parameters based
on objective priors.
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2.1. The probability matching priors

For a prior π, let θ1−α1 (π;X) denote the (1− α)th posterior quantile of θ1, that is,

Pπ[θ1 ≤ θ1−α1 (π;X)|X] = 1− α, (2.3)

where θ = (θ1, · · · , θt)T and θ1 is the parameter of interest. We want to find priors π for
which

P [θ1 ≤ θ1−α1 (π;X)|θ] = 1− α+ o(n−r). (2.4)

for some r > 0, as n goes to infinity. Priors π satisfying (2.4) are called matching priors. If
r = 1/2, then π is referred to as a first order matching prior, while if r = 1, π is referred to
as a second order matching prior.

In order to find such matching priors π, let

θ1 =
σ2
σ1

and θ2 = σn1
1 σn2

2 .

With this parametrization, the likelihood function of parameters (θ1, θ2) for the models (2.1)
and (2.2) is given by

L(θ1, θ2)

∝ θ−12

n1∏
i=1

[
1 + exp

(
−θ

n2
n1+n2
1 θ

−1
n1+n2
2 xi

)]−2 n2∏
i=1

[
1 + exp

(
−θ

−n1
n1+n2
1 θ

−1
n1+n2
2 yi

)]−2
× exp

{
−θ

n2
n1+n2
1 θ

−1
n1+n2
2

n1∑
i=1

xi − θ
−n1

n1+n2
1 θ

−1
n1+n2
2

n2∑
i=1

yi

}
. (2.5)

Based on (2.5), the Fisher information matrix is given by

I(θ1, θ2) =

(
n1n2(3+π

2)
9(n1+n2)

θ−21 0

0 3+π2

9(n1+n2)2
θ−22

)
. (2.6)

From the above Fisher information matrix I, θ1 is orthogonal to θ2 in the sense of Cox and
Reid (1987). Following Tibshirani (1989), the class of first order probability matching prior
is characterized by

π(1)
m (θ1, θ2) ∝ θ−11 d(θ2), (2.7)

where d(θ2) > 0 is an arbitrary function differentiable in its argument.
The class of prior given in (2.7) can be narrowed down to the second order probability

matching priors as given in Mukerjee and Ghosh (1997). A second order probability matching
prior is of the form (2.7), and d must satisfy an additional differential equation (2.10) of
Mukerjee and Ghosh (1997), namely

1

6
d(θ2)

∂

∂θ1
{I−

3
2

11 L1,1,1}+
∂

∂θ2
{I−

1
2

11 L112I
22d(θ2)} = 0, (2.8)
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where

L1,1,1 = E

[(
∂ logL

∂θ1

)3
]

=
n1n2(n1 − n2)π2

3(n1 + n2)2
θ−31 ,

L112 = E

[
∂3 logL

∂θ21∂θ2

]
=

n1n2π
2

6(n1 + n2)2
θ−21 θ−12 ,

I11 =
n1n2(3 + π2)

9(n1 + n2)
θ−21 , I22 =

9(n1 + n2)2

3 + π2
θ22.

Then (2.8) simplifies to

∂

∂θ2

{
π2(n1n2)

1
2

(3 + π2)
3
2 (n1 + n2)

1
2

θ−11 θ2d(θ2)

}
= 0. (2.9)

Hence the set of solution of (2.9) is of the form d(θ2) = θ−12 . Thus the resulting second order
probability matching prior is

π(2)
m (θ1, θ2) ∝ θ−11 θ−12 . (2.10)

Remark 2.1 There are alternative ways through which matching can be accomplished.
Datta, Ghosh and Mukerjee (2000) provided a theorem which establishes the equivalence of
second order matching priors and HPD matching priors (DiCiccio and Stern, 1994; Ghosh
and Mukerjee, 1995) within the class of first order matching priors. The equivalence condition

is that I
−3/2
11 L111 dose not depend on θ1. Since

L111 = E

[
∂3 logL

∂θ31

]
=
n1n2[6(n1 + n2) + (3n1 + n2)π2]

6(n1 + n2)2
θ−31 ,

I
−3/2
11 L111 does not depend on θ1. Therefore the second order probability matching prior

(2.10) is a HPD matching prior. Also

L11,1 = E

[
∂2 logL

∂θ21

∂ logL

∂θ1

]
= c1θ

−3
1 ,

L11,2 = E

[
∂2 logL

∂θ21

∂ logL

∂θ2

]
= c2θ

−2
1 θ−12

and d(θ2) = θ−12 , where c1 and c2 are constants. Then

∂

∂θ2
{L112I

22I
−1/2
11 d(θ2)} = 0,

∂

∂θ2
{L11,2I

22I
−1/2
11 d(θ2)} = 0,

∂

∂θ1
{I−3/211 L111} = 0,

∂

∂θ1
{I−3/211 L11,1} = 0.

Therefore the second order matching prior (2.10) matches the alternative coverage proba-
bilities (Mukerjee and Reid, 1999).
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2.2. The reference priors

Reference priors introduced by Bernardo (1979), and extended further by Berger and
Bernardo (1992) have become very popular over the years for the development of noninfor-
mative priors. In this section, we derive the reference priors for different groups of ordering
of (θ1, θ2). Then due to the orthogonality of the parameters, following Datta and Ghosh
(1995b), choosing rectangular compacts for each θ1 and θ2 when θ1 is the parameter of
interest, the reference priors are given by as follows.

For the likelihood (2.5), if θ1 is the parameter of interest, then the reference prior distri-
butions for group of ordering of {(θ1, θ2)} is

π1(θ1, θ2) ∝ θ−11 θ−12 .

For group of ordering of {θ1, θ2}, the reference prior is

π2(θ1, θ2) ∝ θ−11 θ−12 .

Remark 2.2 From the above reference priors, we know that the one-at-a-time reference
prior π2 and Jeffreys’ prior π1 are the second order matching prior, and all priors are the
same.

3. Implementation of the Bayesian procedure

We investigate the propriety of posteriors for a general class of priors which includes the
reference prior and the matching prior. We consider the class of priors

π(θ1, θ2) ∝ θ−a1 θ−b2 , (3.1)

where a > 0 and b > 0. The following general theorem can be proved.

Theorem 3.1 The posterior distribution of (θ1, θ2) under the prior π, (3.1), is proper if
bn1 − a+ 1 > 0 and bn2 + a− 1 > 0.

Proof : Note that the joint posterior for θ1 and θ2 given x and y is

π(θ1, θ2|x,y)

∝ θ−a1 θ−b−12 exp

{
−θ

n2
n1+n2
1 θ

−1
n1+n2
2

n1∑
i=1

xi − θ
−n1

n1+n2
1 θ

−1
n1+n2
2

n2∑
i=1

yi

}

×
n1∏
i=1

[
1 + exp

(
−θ

n2
n1+n2
1 θ

−1
n1+n2
2 xi

)]−2 n2∏
i=1

[
1 + exp

(
−θ

−n1
n1+n2
1 θ

−1
n1+n2
2 yi

)]−2
.(3.2)

Then we get

π(θ1, θ2|x,y) ≤ θ−a1 θ−b−12 exp

{
−θ

n2
n1+n2
1 θ

−1
n1+n2
2

n1∑
i=1

xi − θ
−n1

n1+n2
1 θ

−1
n1+n2
2

n2∑
i=1

yi

}
≡ π′(θ1, θ2|x,y). (3.3)
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Thus integrating with respect to θ2 in (3.3), we can get

π′(θ1|x,y) ∝ θ−bn2−a
1

[
n1∑
i=1

xi + θ−11

n2∑
i=1

yi

]−b(n1+n2)

=

(
n1∑
i=1

xi

)−b(n1+n2) ∫ ∞
0

θ−a+bn1
1

(
θ1 +

∑n2

j=1 yj∑n1

i=1 xi

)−b(n1+n2)

dθ1. (3.4)

Letting z = θ1/(θ1 + k), where k =
∑n2

j=1 yj/
∑n1

i=1 xi, the above integration results in beta
function. Thus the integration in (3.4) is finite if bn1 − a+ 1 > 0 and bn2 + a− 1 > 0. This
completes the proof. �

Theorem 3.2 Under the prior (3.1), the marginal posterior density of θ1 is given by

π(θ1|x,y)

∝
∫ ∞
0

θ−a1 θ−b−12 exp

{
−θ

n2
n1+n2
1 θ

−1
n1+n2
2

n1∑
i=1

xi − θ
−n1

n1+n2
1 θ

−1
n1+n2
2

n2∑
i=1

yi

}
(3.5)

×
n1∏
i=1

[
1 + exp

(
−θ

n2
n1+n2
1 θ

−1
n1+n2
2 xi

)]−2 n2∏
i=1

[
1 + exp

(
−θ

−n1
n1+n2
1 θ

−1
n1+n2
2 yi

)]−2
dθ2.

Therefore we have the marginal posterior density of θ1, and so it is easy to compute the
marginal moment of θ1. In Section 4, we investigate the frequentist coverage probabilities
for the reference prior.

4. Numerical studies

We evaluate the frequentist coverage probability by investigating the credible interval
of the marginal posterior density of θ1 under the reference prior given in Section 3 for
several configurations (σ1, σ2) and (n1, n2). That is to say, the frequentist coverage of a
(1−α)th posterior quantile should be close to 1−α. This is done numerically. Table 4.1 gives
numerical values of the frequentist coverage probabilities of 0.05 (0.95) posterior quantiles
for the our prior. The computation of these numerical values is based on the following
algorithm for any fixed true (λ1, λ2) and any prespecified probability value α. Here α is
0.05 (0.95). Let θπ1 (α|X,Y) be the posterior α-quantile of θ1 given X and Y. That is,
F (θπ1 (α|X,Y)|X,Y) = α, where F (·|X,Y) is the marginal posterior distribution of θ1.
Then the frequentist coverage probability of this one sided credible interval of θ1 is

P(θ1,θ2)(α; θ1) = P(θ1,θ2)(0 < θ1 ≤ θπ1 (α|X,Y)). (4.1)

The computed P(θ1,θ2)(α; θ1) when α = 0.05(0.95) is shown in Table 4.1. In particular, for
fixed n and (σ1, σ2), we take 10, 000 independent random samples of X = (X1, · · · , Xn1)
and Y = (Y1, · · · , Yn2

) from the half logistic distributions, respectively.
In Table 4.1, we can observe that the reference prior meets very well the target coverage

probabilities even for the small sample sizes. Also note that the results of table are not much
sensitive to the change of the values of (θ1, σ1). Thus we recommend to use the reference
prior.
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Table 4.1 Frequentist coverage probability of 0.05 (0.95) posterior quantiles of θ1

θ1 σ1 n1 n2 πr

0.1

0.1

5 5 0.048 (0.951)
5 10 0.053 (0.949)
10 10 0.053 (0.949)
10 15 0.054 (0.950)

1.0

5 5 0.044 (0.945)
5 10 0.050 (0.948)
10 10 0.052 (0.952)
10 15 0.046 (0.949)

10.0

5 5 0.049 (0.947)
5 10 0.051 (0.953)
10 10 0.051 (0.949)
10 15 0.049 (0.951)

1.0

0.1

5 5 0.051 (0.949)
5 10 0.048 (0.953)
10 10 0.048 (0.948)
10 15 0.051 (0.948)

1.0

5 5 0.050 (0.948)
5 10 0.052 (0.951)
10 10 0.048 (0.952)
10 15 0.049 (0.950)

10.0

5 5 0.049 (0.949)
5 10 0.046 (0.950)
10 10 0.046 (0.950)
10 15 0.047 (0.949)

10.0

0.1

5 5 0.047 (0.951)
5 10 0.052 (0.949)
10 10 0.046 (0.951)
10 15 0.051 (0.949)

1.0

5 5 0.050 (0.951)
5 10 0.052 (0.947)
10 10 0.046 (0.947)
10 15 0.049 (0.947)

10.0

5 5 0.043 (0.950)
5 10 0.049 (0.948)
10 10 0.052 (0.950)
10 15 0.051 (0.951)

Example 4.1 This example is taken from Balakrishnan and Puthenpura (1986). The data
is failure times, in minutes, for a specific type of electrical insulation in an experiment in
which the insulation was subjected to a continuously increasing voltage stress. For this data,
Balakrishnan and Puthenpura (1986) concluded that the half logistic distribution fits the
data better than an exponential distribution. For estimation of ratio of scale parameters, we
randomly divided this data into two groups. The data sets are given by

Group 1: 21.8, 70.7, 151.9, 75.3, 12.3, 28.6.
Group 2: 24.4, 138.6, 95.5, 98.1, 43.2, 46.9.

For this data, the maximum likelihood estimate (MLE) of θ1 is 1.1826 and the correspond-
ing 95% asymptotic confidence interval of θ1 is (0.0635, 2.3016). Bayes estimate and the 95%
credible interval based on the reference prior are 1.3431 and (0.4384, 3.1832), respectively.
The estimate based on the reference prior and the MLE give almost same results, but the
confidence intervals based on the MLE and the reference prior give some different results.



840 Sang Gil Kang · Dal Ho Kim · Woo Dong Lee

5. Concluding remarks

In the half logistic models, we have found the second order matching prior and the reference
prior for the ratio of the scale parameters. We revealed that the second order matching
prior is a HPD matching prior and matches the alternative coverage probabilities up to the
second order. It turns out that the reference prior and Jeffreys’ prior are the second order
matching prior. As illustrated in our numerical study, the reference prior meets very well the
target coverage probabilities. Thus we recommend the use of the reference prior for Bayesian
inference of the ratio of the scale parameters in two independent half logistic distributions.
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