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Abstract

In this paper, we develop the noninformative priors for stress-strength reliability
from the Pareto distributions. We develop the matching priors and the reference pri-
ors. It turns out that the second order matching prior does not match the alternative
coverage probabilities, and is not a highest posterior density matching or a cumelative
distribution function matching priors. Also we reveal that the one-at-a-time reference
prior and Jeffreys’ prior are the second order matching prior. We show that the pro-
posed reference prior matches the target coverage probabilities in a frequentist sense
through simulation study, and an example is given.

Keywords: Matching prior, Pareto distribution, reference prior, stress-strength reliabil-
ity.

1. Introduction

The Pareto distribution provides a statistical model which has an extensive variety of
applications. It has been found in describing distributions of studies of income, property
values, insurance risk, stock prices fluctuations, migration, size of cities and firms, word
frequencies, occurrences of natural resources, business failures, service time in queuing sys-
tems, error clustering in communications circuits and lifetime data, etc (Arnold and Press,
1983; Fernandez, 2008). In a Bayesian point of view, many authors have studied statistical
inferences on Pareto distribution (e.g., Arnold and Press, 1983, 1989; Geisser, 1984, 1985;
Lwin, 1972; Nigm and Hamdy, 1987; Tiwari, Yang and Zalkikar, 1996; Ko and Kim, 1999;
Ferndndez, 2008; Kim, Kang and Lee, 2009; Kang, 2010).

In reliability contexts, inferences about reliability

R=P(Y < X),
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where X and Y have independent distributions, are a subject of interest. The problem of
making inference about R have been received a considerable attention in statistical literature.
For example, an item is able to perform its intended function if its strength is greater than
the stress imposed upon it. The probability that an item is strong enough to overcome the
stress is the measure of confidence of the item. So, to make statistical inference about this
probability is very important.

The present paper focuses on developing noninformative priors for the reliability R in
Pareto distributions. Subjective priors are ideal when sufficient information from past ex-
perience, expert opinion or previously collected data exist. However, often even without
adequate prior information, one can use Bayesian analysis efficiently with some noninforma-
tive or default priors.

The notion of a noninformative prior has attracted much attention in recent years. There
are different notions of noninformative prior. One is a probability matching prior introduced
by Welch and Peers (1963) which matches the posterior and frequentist probabilities of confi-
dence intervals. Interest in such priors revived with the work of Stein (1985) and Tibshirani
(1989). Among others, we may cite the work of Mukerjee and Dey (1993), DiCiccio and
Stern (1994), Datta and Ghosh (1995a, b, 1996) and Mukerjee and Ghosh (1997).

The other is the reference prior introduced by Bernardo (1979) which maximizes the
Kullback-Leibler divergence between the prior and the posterior. Ghosh and Mukerjee
(1992), and Berger and Bernardo (1989, 1992) give a general algorithm to derive a reference
prior by splitting the parameters into several groups according to their order of inferential
importance. This approach is very successful in various practical problems. Quite often
reference priors satisfy the matching criterion described earlier.

The problem of estimating R for Pareto distributions with the common scale parame-
ter and the different scale parameters was considered by Rezaei et al. (2010). When the
common scale parameter is known, Rezaei et al. (2010) derived the maximum likelihood
estimator, uniformly minimum variance unbiased estimator and Bayes estimator based on
gamma priors, and revealed that their performance are quite similar in nature. Also they
derived the confidence interval based on the exact distribution of the maximum likelihood
estimator, and showed that the coverage probabilities of the confidence intervals reach the
nominal level, 95% when the sample size is increase.

This situation with known common scale parameter and different shape parameters in
Pareto distribution is somewhat realistic. If one knows the information of an item very
well, one will give stronger stress to the item for the purpose of proving the strength of an
item. Then he will try higher stress X than strength Y. Usually stress changes shape of
distribution rather than scale of distribution in many cases. So, we postulate with known
common scale parameter and different shape parameters in Pareto distributions (Pandey
and Upadhyay, 1986).

The outline of the remaining sections is as follows. In Section 2, we develop first order and
second order probability matching priors for R. We revealed that the second order matching
prior is not a highest posterior density (HPD) matching prior and a cumulative distribution
function (CDF) matching prior, and does not match the alternative coverage probabilities
up to the second order. Also we derive the reference priors for R. It turns out that the one-
at-a-time reference prior and Jeffreys’ prior are the second order matching prior. We provide
the propriety of the posterior distribution for the general prior including the reference and
matching priors. In Section 4, we will find the frequentist coverage probabilities under the
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proposed prior. And a real data example will be given.

2. The noninformative priors

Let X and Y be two independent the Pareto distributions with the common scale param-
eter A\, and shape parameters 1 and [, respectively. Typically, X represents the amount
of the stress subjected to an item and Y represents the strength of an item. The Pareto
probability density functions of X and Y are given by

f(@n) = nA(1 + Ax)~ D 2 > 0, > 0, (2.1)
and

FyIB) = BAA +Ay)~ P+ y > 0,5 > 0, (2.2)
respectively. The reliability R can be easily calculated by,

B

n+p

This reliability R is parameter of interest. Now we develop the noninformative priors for R
when A is known. Without of generality, we can assume that A = 1.

Suppose that Xi, -+, X, is a random sample of stress X and Yi,---,Y,, is a random
sample of strength Y. Then the likelihood function of n and g is given by

R=P(Y <X)=

L(n, B) = "B [[(1 +2)~ D T (1 +y) =Y. (2.3)
i=1 j=1

m

2.1. The probability matching priors
For a prior 7, let 87~ %(7m; X) denote the (1 — a)th posterior quantile of 6;, that is,

P[0, <0 (M X)|X] =1 —aq, (2.4)
where @ = (6y,--- ,6;)T and 6; is the parameter of interest. We want to find priors 7 for
which

Pl6y <017 %(m;X)|0] =1 —a+o(n™"). (2.5)

for some r > 0, as n goes to infinity. Priors 7 satisfying (2.5) are called matching priors. If
r = 1/2, then 7 is referred to as a first order matching prior, while if r = 1, 7 is referred to
as a second order matching prior.

In order to find such matching priors m, it is convenient to consider the orthogonal re-
parametrization which a parameter of interest is orthogonal to the rest of parameters in
information matrix. To achieve orthogonality, let

and 6, = n"p™.
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With this parametrization, the likelihood function of parameters (1, 63) for the model (2.3)
is given by

L(64,62)
" N S o g

x 92 H (1 + xi)—el (1—=01) ntm 6, —1 H (1 + yj)—@l (1—6,)ntm o, -1 ] (26)
i=1 j=1

Based on (2.6), the information matrix is given by

nm_g=2(] _ )2 0
1(91’92) :( n+m 1 (0 1) L 9_2 )

n+m "~ 2

(2.7)

From the above Fisher information matrix I, 8, is orthogonal to 65 in the sense of Cox and
Reid(1987). Following Tibshirani(1989), the class of first order probability matching prior
is characterized by

7101, 605) oc 6711 — 01)71d(6,), (2.8)

where d(62) > 0 is an arbitrary function differentiable in its argument.

The class of prior given in (2.8) can be narrowed down to the second order probability
matching priors as given in Mukerjee and Ghosh (1997). A second order probability matching
prior is of the form (2.8), and also d must satisfy an additional differential equation (2.10)
of Mukerjee and Ghosh (1997), that is

1 o . -3 0 1
Ed(ez)%{1112L1,171} + 372{]112&1212261(92)} =0, (2.9)
where
dlog L\ 2nm(n —m) ,_4 _
L,.=E ( 2. ) ] = Wel (1—61)7%,
0 log L nm
Lio=F|=5o—| = ————07%(1—6,)7265"
112 [69%892 } (n+m)2! ( )0

nm _ _
Iy = EE077(1 = 0) 7207 = (n -+ m) 6.

Then (2.9) simplifies to

0 (nm)% —1 - _
s {(91 (1-6y) 102d(92)} =0. (2.10)

Hence the set of solution of (2.10) is of the form d(fy) = 6. Thus the resulting second
order probability matching prior is
72 (01,02) oc 711 — 0;) 716, 1. (2.11)

There are alternative ways through which matching can be accomplished. Datta, Ghosh
and Mukerjee (2000) provided a theorem which establishes the equivalence of second order
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matching priors and HPD matching priors (DiCiccio and Stern, 1994; Ghosh and Mukerjee,
1995) within the class of first order matching priors. The equivalence condition is that

I1_13/2L111 dose not depend on ;. Since

3 log L 2 0 —n—2
Lm_E{a og ]__ nm  3(n+m)f; —n—2m

o0} (ntm? G-

Ifls/ 2L111 depends on 6;. Therefore the second order probability matching prior (2.11) is
not a HPD matching prior. Also since

9 -3
8761{‘,11 Lin} #0,
thus the second order matching prior (2.11) does not match the alternative coverage prob-
abilities (Mukerjee and Reid, 1999), and now

0
8701 (IH)QLHND(Z)} #0,

so the second order matching prior (2.11) is not a CDF matching prior (Mukerjee and Ghosh,
1997).

2.2. The reference priors

Reference priors introduced by Bernardo (1979), and extended further by Berger and
Bernardo (1992) have become very popular over the years for the development of noninfor-
mative priors. We derive the reference priors for different groups of ordering of (61, 62). Then
due to the orthogonality of the parameters, following Datta and Ghosh (1995b), choosing
rectangular compacts for each #; and 65 when 6, is the parameter of interest, the reference
priors are given as follows.

For the the stress-strength reliability model (2.6), if 67 is the parameter of interest, then
the reference prior distributions for group of ordering of {(6;,62)} is

m1(01,02) o 071 (1—61)7t05 "
For group of ordering of {61, 65}, the reference prior is
To(61,02) oc 0711 —61)7 105"
Conclusively, from the above reference priors, we know that the one-at-a-time reference prior

mo and Jeffreys’ prior m; are the second order matching prior, and all priors are the same.

3. Implementation of the Bayesian procedure

We investigate the propriety of posteriors for a general class of priors which include the
reference and the matching priors. We consider the class of priors

m(01,0) o< O7(1 — 6,) 705", (3.1)

where @ > 0 and b > 0. The following general theorem can be proved.
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Theorem 3.1 The posterior distribution of (61, 62) under the prior 7, in (3.1), is proper if
bm—a+1>0and bn—a+1>0.
Proof: Note that the joint posterior for ; and 6 given x and y is

n

—m m ﬁ
7(61,02]%,y) o< O7%(1 — 6;) %05+ [H 1+ wi)ef“fm (1—,)7om g+ ]

i=1

x [H(l +yz-)"1”+m<1el>n+m95+m] : (3.2)

i=1

1
Let w = 657™. Then integrating with respect to w in (3.2), we can get

—b(n+m)
'/T(91|X,y) o H{nbfa(l o 0 ) mb—a [Z log ]_ —+ QCZ Zlog ]. =+ yy (33)
=1
Let 6 = 12101 . Then we obtain the posterior
m —b(n+m)
_ _ -1 log(1 +y,)
m(8]x,y) oc 60T+ 6)* 2{1%2;—1 £ 34
(5)%.) (1+9) S o) (3.4)

Thus the posterior (3.4) is proper if bm —a+1 > 0 and bn —a + 1 > 0. This completes the
proof. O

Theorem 3.2 Under the prior (3.1), the marginal posterior density of 6; is given by

mb—a —b(n+m)

7T(01‘X7 y) 0.8 u_lem [Z log 1 + SCZ Zlog 1 + yy (35)

Note that the marginal density of 6; requires an one dimensional integration. Therefore
we have the marginal posterior density of 61, and so it is easy to compute the marginal
moment of 6; which is a Bayes estimator of #; under the squared error loss function.

4. Numerical studies

We evaluate the frequentist coverage probability by investigating the credible interval of
the marginal posterior density of #; under the reference prior given in Section 3 for several
configurations (7, 3) and (n,m). That is to say, the frequentist coverage of a (1 — «)th
posterior quantile should be close to 1 — a. This is done numerically. Table 4.1 gives nu-
merical values of the frequentist coverage probabilities of 0.05 (0.95) posterior quantiles
for the proposed prior. The computation of these numerical values is based on the fol-
lowing algorithm for any fixed (1, ) and any prespecified probability value «. Here « is
0.05 (0.95). Let 07 (a|X,Y) be the ath posterior quantile of 6y given X and Y. That is,



Noninformative priors for stress-strength reliability in the Pareto distributions 121

FOT()X,Y)|X,Y) = a, where F(-|X,Y) is the marginal posterior distribution of 6;.
Then the frequentist coverage probability of this one sided credible interval of 8, is

P(91792)(O‘; 01) = P(91,92)(0 <60 < GT(Q|X7Y))' (4'1)

The estimated P, 9,)(;01) when o = 0.05(0.95) is shown in Table 4.1. In particular, for
fixed n,m and (n,3), we take 10,000 independent random samples of X = (X1, -+, X},)
and Y = (Y7,---,Y,,) from the Pareto distributions, respectively.

In Table 4.1, we can observe that the proposed prior meets very well the target coverage
probabilities even for the small sample sizes. Also note that the results of table are not much
sensitive to the change of the values of (61, 7).

Ezample. This example taken from Rezaei, et al. (2010), and the data has been generated
usingn = m = 20, n = 1.0 and § = 1.4 with common scale parameter A = 1.0. The X values
are 0.0024, 1.0863, 19.3212, 6.5356, 6.1724, 4.9743, 0.0648, 1.7140, 0.4599, 1.8520, 0.1250,
0.0185, 10.4438, 0.3367, 0.0088, 0.9618, 1.8178, 0.7337, 0.0296, 0.1922 and the corresponding
Y values are 0.0359, 0.7108, 2.0499, 4.7506, 2.4195, 5.0290, 1.4026, 0.2223, 4.9126, 0.0538,
0.5266, 0.7632, 0.7383, 1.3550, 0.0206, 3.3423, 0.5894, 1.1491, 0.6478, 0.0824.

Table 4.1 Frequentist coverage probability of 0.05 (0.95) posterior quantiles of 61

n
0, n m 7.0 10.0 100.0

0.1 3 3 0.050(0.955) 0.051(0.951) 0.051(0.953)

5 0.053(0.948) 0.049(0.950) 0.051(0.950)

10 0.052(0.950) 0.051(0.951) 0.053(0.949)

5 3 0.049(0.949) 0.052(0.952) 0.051(0.948)

5 0.048(0.953) 0.054(0.950) 0.053(0.950)

10 0.050(0.952) 0.050(0.951) 0.049(0.948)

0 3 0.048(0.952) 0.050(0.951) 0.052(0.953)

5 0.049(0.952) 0.051(0.949) 0.047(0.950)

10 0.049(0.946) 0.054(0.948) 0.051(0.949)

0.3 3 3 0.048(0.951) 0.049(0.951) 0.049(0.949)

5 0.051(0.955) 0.053(0.954) 0.052(0.950)

10 0.044(0.951) 0.048(0.949) 0.052(0.945)

5 3 0.052(0.950) 0.048(0.949) 0.047(0.951)

5 0.051(0.946) 0.049(0.950) 0.050(0.950)

10 0.047(0.953) 0.050(0.952) 0.052(0.950)

10 3 0.051(0.949) 0.052(0.948) 0.051(0.954)

5 0.050(0.952) 0.050(0.950) 0.049(0.951)

10 0.051(0.953) 0.050(0.952) 0.050(0.948)

05 3 3 0.045(0.950) 0.050(0.951) 0.052(0.950)

5 0.050(0.951) 0.048(0.953) 0.050(0.953)

10 0.045(0.951) 0.049(0.951) 0.054(0.949)

5 3 0.050(0.949) 0.048(0.947) 0.051(0.951)

5 0.046(0.952) 0.053(0.946) 0.053(0.951)

10 0.053(0.948) 0.048(0.950) 0.049(0.950)

0 3 0.051(0.947) 0.047(0.951) 0.050(0.948)

5 0.052(0.949) 0.051(0.953) 0.052(0.951)

10 0.053(0.951) 0.047(0.951) 0.047(0.950)

0.7 3 3 0.047(0.951) 0.050(0.952) 0.050(0.948)

5 0.051(0.948) 0.047(0.949) 0.055(0.955)

10 0.052(0.951) 0.046(0.951) 0.050(0.951)

5 3 0.051(0.948) 0.048(0.949) 0.047(0.947)

5 0.049(0.948) 0.050(0.951) 0.047(0.951)

10 0.050(0.946) 0.048(0.954) 0.052(0.949)

10 3 0.055(0.952) 0.053(0.951) 0.047(0.947)

5 0.052(0.946) 0.050(0.948) 0.050(0.953)

10 0.048(0.951) 0.052(0.949) 0.050(0.957)




122 Sang Gil Kang - Dal Ho Kim - Woo Dong Lee

Table 4.1 (Continue) Frequentist coverage probability of 0.05 (0.95) posterior quantiles of 6

n
6, n m 7.0 10.0 100.0

0.9 3 3 0.053(0.951) 0.055(0.951) 0.047(0.950)

5 0.045(0.948) 0.049(0.947) 0.051(0.951)

10 0.052(0.953) 0.047(0.949) 0.051(0.946)

5 3 0.053(0.952) 0.048(0.952) 0.048(0.948)

5 0.055(0.948) 0.049(0.947) 0.052(0.952)

10 0.049(0.948) 0.047(0.954) 0.052(0.949)

10 3 0.051(0.948) 0.050(0.950) 0.052(0.951)

5 0.048(0.951) 0.048(0.950) 0.048(0.952)

10 0.049(0.949) 0.051(0.949) 0.047(0.950)

From the results of Rezaei, et al. (2010), the maximum likelihood estimate (MLE) and
estimate of the percentile bootstrap method of 6; are 0.5353 and 0.5361, respectively, and
also the 95% confidence intervals of 6; based on the MLE, the percentile bootstrap method
and the bootstrap-t method are (0.381, 0.684), (0.380, 0.691) and (0.359, 0.702), respectively.

Bayes estimate and the 95% credible interval based on the reference prior are 0.5344 and
(0.381, 0.684), respectively. The Bayes estimate based on the reference prior, the MLE and
estimate by the bootstrap method give almost same results. And the confidence intervals
based on the MLE, the percentile bootstrap method and the reference prior give the similar
results but the confidence interval based on the MLE and the Bayesian credible interval are
shorter than the confidence intervals based on the bootstrap methods.

5. Concluding remarks

In the Pareto models, we have found the second order matching prior and the reference
priors for the stress-strength reliability. We revealed that the second order matching prior
is not a HPD matching prior and is not a CDF matching prior, and also does not match the
alternative coverage probabilities up to the second order. It turns out that the reference prior
and Jeffreys’ prior are the second order matching prior. As illustrated in our numerical study,
the reference prior meets very well the target coverage probabilities. Thus we recommend
the use of the reference prior for Bayesian inference of the stress-strength reliability in two
independent Pareto distributions.
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