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Noninformative Priors for the Common Shape
Parameter in the Gamma Distributions
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Abstract

In this paper, we develop the noninformative priors for the common
shape parameter in the gamma distributions. We develop the matching
priors and reveal that the second order matching prior does not exist. It
turns out that the one-at-a-time reference prior and the two group
reference prior satisfy a first order probability matching criterion. Some
simulation study is performed.

Keywords @ Common Shape, Gamma Distribution, Matching Prior,
Reference Prior

1. Introduction

Consider k independent gamma populations with the shape parameter « and the
scale parameter (5;,¢=1,---,k.. Let X;;, j=1,---,n; denote observations from the

i th gamma population. Then the gamma distribution of Xj; is given by
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where a >0, 8; >0 and « is the common shape parameter. As noted by various

authors (Lawless, 1982; Keating et. al, 1990, etc), the gamma distribution is
widely used in reliability and survival analysis. In particular, the shape parameter
is of special interest because the shape parameter less than 1, equal to 1 and
greater than 1 correspond to a decreasing failure rate, a constant failure rate and
an increasing failure rate, respectively. The model (1) can be motivated within
competing risks theory (see Wong and Wu, 1998).

The present paper focuses on noninformative priors for the common shape
parameter. We consider Bayesian priors such that the resulting credible intervals
for the common shape parameter have coverage probabilities equivalent to their
frequentist counterparts. Although this matching can be justified only
asymptotically, our simulation results indicate that this is indeed achieved for
small or moderate sample sizes as well.

This matching idea goes back to Welch and Peers (1963). Interest in such priors
revived with the work of Stein (1985) and Tibshirani (1989). Among others, we
may cite the work of DiCiccio and Stern (1994), Datta and Ghosh (1995a,b, 1996),
Mukerjee and Ghosh (1997) and Mukerjee and Reid (1999).

On the other hand, Ghosh and Mukerjee (1992), and Berger and Bernardo
(1989,1992) extended Bernardo’s (1979) reference prior approach, giving a general
algorithm to derive a reference prior by splitting the parameters into several
groups according to their order of inferential importance. This approach is very
successful in various practical problems. Quite often reference priors satisfy the
matching criterion described earlier (Kim and Sohn, 2004; Kang, 2004).

Wong and Wu (1998) compared the accuracy of tail probabilities obtained by
various approximates inference procedure for the common shape parameter of the
gamma distributions. They concluded that although the first order methods based
on the maximum likelihood estimator and signed square root of the likelihood ratio
statistic are the most common approximations used by applied statisticians, they
sometimes give unsatisfactory or even misleading approximations, and all the third
order methods give very similar results but the approximation using the exact
conditional log likelihood function seems to be the best.

The outline of the remaining sections is as follows. In Section 2, we develop
first order and second order probability matching priors for the common shape
parameter. We revealed that the second order matching prior does not exist. Also
we derive the reference priors for the parameters. It turns out that the
one-at—a—time reference prior and the two group reference prior satisfy a first
order matching criterion. We provide that the propriety of the posterior distribution
for the reference priors as well as first order matching prior. In Section 4,
simulated frequentist coverage probabilities under the proposed priors are given.
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2. The Noninformative Priors

2.1 The Matching Priors

For a prior 7, let 0] “(mX) denote the 100(1—a)th percentile of the

posterior distribution of €, that is,
Pro,<6l “(m:X) | X]=1—qa, (2)

where 0 = (91 ,---,Qt)T and 6, is the parameter of interest. We want to find
priors ™ for which

P, <6 “(m:X) |0]=1—a+o(n"). (3)

for some u, as M goes to infinity. Priors 7 satisfying (3) are called matching
priors. If u= 1/2, then 7 is referred to as a first order matching prior, while if
v =1, 7 is referred to as a second order matching prior.

In order to find such matching priors, let

A=a and p; =af;,i =1, k.

With this parameterization, the likelihood function of parameters ()x, o, uk) for
the model (1) is given by

1l

i=1 i=1 My

o7 i

i=1lj=1

k.
exp{— A, T }, (4)
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where n=mn;++mn, andz;. = E:c,;j,i: 1,---,k. Based on (4), the TFisher
j=1

information matrix is given by

1= Diag{n [/ (A) =X Ay 2, nk)\,u;;?}, )]

where ¢’ ( - ) is the trigamma function. From the above Fisher information matrix
I, X\ is orthogonal to (f4,*.p4,) in the sense of Cox and Reid(1987). Following

Tibshirani(1989), the class of first order probability matching prior is characterized
by
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77%) ()‘; 1 230) "'muk)oc W'(/\) - )‘_l]l/zd (:ul/' uk); (6)

where d(gty.-++,p1z) >0 is an arbitrary function differentiable in its arguments.

The class of prior given in (6) can be narrowed down to the second order
probability matching priors as given in Mukerjee and Ghosh (1997). A second
order probability matching prior is of the form (6), and also d must satisfy an
additional differential equation (cf (2.10) of Mukerjee and Ghosh (1997)), namely

|

3 k 1
1 4 4,73 9 -y w
gd(/ﬁn“';ﬂf:)ﬁ{fn‘Lm,lﬁ yzlﬁ{lh%nm d(uq,---,-uk)}: 0.

where

Ly = EI(ZBL ) — g(3), g(A) = a function of A,

_pr@losLy g : ,
Ly, = E| 8)\26,%]_0’0_1’ K and Ly=n[y(\) =21,

Then (7) simplifies to

G ) 5 10 () = A1) b= 0.

Thus the resulting second order probability matching prior does not exist.

Remark 1. In single population (k=1), Garvan and Ghosh (1997) derived the
matching prior for the mean parameter and the shape parameter. They revealed
that the second order matching prior for the shape parameter does not exist.

2.2 The Reference Priors

Reference priors introduced by Bernardo (1979), and extended further by Berger
and Bernardo (1992) have become very popular over the years for the development
of noninformative priors. In this section, we derive the reference priors for
different groups of ordering of (/\, JUEPRRE ,uk). Then due to the orthogonality of the

parameters, following Datta and Ghosh (1995b), choosing rectangular compacts for
each A, 4, -, 4, when A is the parameter of interest, the reference priors are

given as follows.
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If A is the parameter of interest, then the reference prior distributions for
different groups of ordering of (/\, /Ll,---,uk) are:

Group ordering Reference prior
/27 1 —171/2 — —
{()\;/1’17 ) ";/I’k)}; ™ < )‘A/ ? [w (/\)_ A l]l 2/1/] b o !
o (s i) myoe [ ) = AT 2 e

Remark 2. In the above reference priors, the one-at-a—time reference prior and
the two group reference prior satisfy a first order matching criterion. But Jeffreys’
prior, 7, is not a first order matching prior.

In the above results, the first order probability matching priors are given by
7T£,1L) ()‘ Ky, Iuk) & [7// ()‘) o >\_ ! ] 1/2d (ILLli T Mk):

where d is any smooth function of pq, -, ux. However every function is not
permissible in the construction of priors. For instance, we consider any function of
the form(ge, -+ p,)~% If @ is positive integer, then the posterior distribution of A
1s proper. But the condition of propriety in this form strongly depend on the a.

Moreover there does not seems to be any improvement in the coverage
probabilities with this posterior distribution. So we consider a particular first order

matching prior Wwhere dzufl---u;l. Because this matching prior is the

one-at—a-time reference prior and the two group reference prior. The matching
prior is given by

777(711)(>‘:,U/1:'"; :u/k)oc [¢’(A) _)\71]1/2,“171 /l;l. (8)

Remark 3. We show that the prior (8) is joint probability matching when
A, fy,c -y and p, are of interest. Write 6 = (X, py, =< ). Let t,(0) =X,
ty(0) =y, t,(0) =1 and ;. ,(0)=py. Following the notation of Datta
(1996), P(0) = Diag{1,1,---,1}. Thus condition (7) of Datta (1996) is satisfied.
Moreover the prior (8) is the unique solution to the equations of (2) of Datta
(1996). Thus the prior (8) is joint probability matching prior for (A, gy, 14). So

this matching prior can be used for the Bayesian inference in reliability and
survival analysis.
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3. Implementation of the Bayesian Procedure

We investigate the propriety of posteriors for a general class of priors which
include the Jeffreys’ prior and the first order matching prior (8). We consider the
class of priors

ﬂ-g()‘; Hysey ,uk)oc)\a [w’ ()\) - Ail]bﬂfl T ,U‘I;l; 9)
where ¢=0 and b > 0. The following general theorem can be proved.

Theorem 1. The posterior distribution of (A, fty,*+*, /4 ) under the general prior
(9) is proper if ny++n,+a—2b—k—1>0,

Proof. Under the general prior (9), the joint posterior for A,f4, -, {1 given &

is
nA+a b koony
TNty | @) o — [y’ () =27 {HH:;:,@} (10)
r(\) i=1j=1
b a1 E x;
X H/% ; }exp{)\z },
i=1 i=1 Mg
where n=n;+-+n;, andz,. = inj,i:h-wk. Integrating with respect to

tsns i in (10), we have the posterior

(A | z) o A“'[z,b’(x)—xl}”{]_[]_[i (11)

i=1j=1%;.

The marginal posterior (11) is proper if n+a—2b—k—1 > 0. The proof is
omitted because of its similarity to Liseo (1993). This completes the proof. [

Theorem 2. Under the general prior (9), the marginal posterior density of A is
given by

ko -
(A | z) o )\“[ul”(/\)—)\l}b{ﬂﬂ% , (12)
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L
where n=mn;+ --+n; andx,. = Emwﬂ': 1,--,k.
i=1

The normalizing constant for the marginal density of A requires an one
dimensional integration. Therefore we can have the marginal posterior density of
A, and so we can compute the marginal moment of A. In Section 4, we
investigate the frequentist coverage probabilities for Jeffreys’ prior and the
one—at—a—time reference prior, respectively.

4. Numerical Studies and Discussion

We evaluate the frequentist coverage probability by investigating the credible
interval of the marginal posteriors density of A under the noninformative prior 7
given in Section 3 for several configurations (A, .+, ) and (ny,---,n;). That
is to say, the frequentist coverage of a 100(1— «)th posterior quantile should be
close to 1 — «. This is done numerically. Table 1 and 2 give numerical values of
the frequentist coverage probabilities of 0.05 (0.95) posterior quantiles for the
proposed prior. The computation of these numerical values is based on the
following algorithm for any fixed true (A pg.-+, ) and any prespecified

probability value «. Here « is 0.05(095). Let &7(a | X) be the posterior «

—quantile of A given =. That is to say, FO\ (o | X) | X)=a, where F(+ | X) is
the marginal posterior distribution of A. Then the frequentist coverage probability
of this one sided credible interval of A is

P(,\;Hh...;,lk)(a;)\) = P(,\’#h...’#k) (O < /\SXT(OL | X)) (13)

The estimated P(/\,Mh.‘.}ux)(a;)\) when a=0.05(0.95) is shown in Table 1 and 2
for the k=3 and k=25, respectively.
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Table 1: Frequentist Coverage Probabilities of 0.05 (0.95) Posterior Quantiles for A

Sang Gil Kang -

Dal Ho Kim -

Woo Dong Lee

A His o, o3 ny,Ng, Ny T Up
5, b, b5 0.130(0.980) 0.050(0.950)
05 111 5, 5, 10 0.122(0.978) 0.054(0.950)
’ r 10, 10, 10 0.094(0.975) 0.047(0.952)
10, 10, 15 0.093(0.972) 0.048(0.948)
b, b b 0.136(0.983) 0.049(0.957)
113 b, b, 10 0.117(0.976) 0.050(0.949)
» 10, 10, 10 0.098(0.974) 0.051(0.950)
10, 10, 15 0.095(0.972) 0.051(0.945)
5, b, b5 0.139(0.981) 0.055(0.947)
05. 1.3 5 5, 10 0.117(0.979) 0.050(0.950)
2y b 10, 10, 10 0.094(0.974) 0.048(0.951)
10, 10, 15 0.092(0.971) 0.052(0.948)
b, b, b5 0.145(0.983) 0.049(0.949)
1 111 5, 5 10 0.129(0.980) 0.054(0.954)
» 10, 10, 10 0.101(0.975) 0.048(0.951)
10, 10, 15 0.097(0.974) 0.051(0.949)
b, b, b5 0.142(0.981) 0.051(0.948)
113 b, b, 10 0.125(0.981) 0.046(0.951)
r o 10, 10, 10 0.106(0.978) 0.053(0.954)
10, 10, 15 0.098(0.973) 0.049(0.950)
5, b, b5 0.145(0.983) 0.049(0.953)
05. 1. 3 5, 5 10 0.125(0.978) 0.051(0.947)
o 10, 10, 10 0.102(0.974) 0.050(0.948)
10, 10, 15 0.101(0.973) 0.051(0.949)
b, b, b5 0.151(0.984) 0.052(0.953)
9 111 5, 5, 10 0.134(0.980) 0.055(0.950)
» 10, 10, 10 0.108(0.975) 0.051(0.947)
10, 10, 15 0.103(0.976) 0.051(0.953)
5, b, b5 0.148(0.983) 0.047(0.948)
113 5, 5 10 0.126(0.980) 0.052(0.948)
» 10, 10, 10 0.106(0.977) 0.045(0.952)
10, 10, 15 0.102(0.978) 0.049(0.951)
5, b b5 0.153(0.983) 0.056(0.951)
05. 1.3 5, 5, 10 0.128(0.978) 0.050(0.951)
4 10, 10, 10 0.110(0.976) 0.052(0.951)
10, 10, 15 0.105(0.975) 0.051(0.951)

In particular, for fixed (A, g, o, pis) and (N, oy, -+, p15), we take 10,000

)
independent random samples of X from the model (1).
For the cases presented in Table 1 and 2, we see that the one-at-a-time
reference prior T matches the target coverage probability much more accurately

than the Jeffreys’ prior m; for small values of 7;, and values of A. Note that the

one—at—a—time reference prior satisfies a first order matching criterion but Jeffreys’
prior 1s not matching prior. Thus we recommend to use the one-at—a-time
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reference prior T in the sense of asymptotic frequentist coverage property.

In the gamma populations, we have found a prior which is a first order
matching prior and reference prior for the common shape parameter. We revealed
that the second order matching prior does not exist. It turns out that the
one-at—a-time reference prior satisfies the first order matching criterion. Also we
revealed that the one-at-a-time reference prior is a joint probability matching
prior for (X, gy, -+, p;). Thus we recommend the use of the one-at-a-time

reference prior for the Bayesian inference in reliability and survival analysis.

Table 2: Frequentist Coverage Probabilities of 0.05 (0.95) Posterior Quantiles for A

A My [, g, Mg, s T, M9, Th3, Ty, Ty m 4P
5 5 5 5 b 0.163(0.984) 0.050(0.945)
05 11111 5 5, 5, 10, 10 0.135(0.983) 0.047(0.952)
: A 10, 10, 10, 10, 10 0.124(0.981) 0.052(0.951)
10, 10, 10, 15, 15 0.109(0.977) 0.051(0.951)
5 b, b b b 0.161(0.985) 0.051(0.946)
11133 5, b, b, 10, 10 0.133(0.985) 0.049(0.952)
v 9 9 10, 10, 10, 10, 10 0.117(0.980) 0.053(0.951)
10, 10, 10, 15, 15 0.107(0.977) 0.052(0.949)
5 5 5 5 b 0.166(0.986) 0.052(0.951)
01 05 1 3 5 5, 5, 5, 10, 10 0.136(0.981) 0.052(0.943)
A 10, 10, 10, 10, 10 0.113(0.983) 0.048(0.954)
10, 10, 10, 15, 15 0.109(0.977) 0.052(0.948)
5 5, b b, b 0.174(0.987) 0.049(0.949)
1 11111 5 5, 5, 10, 10 0.145(0.984) 0.049(0.949)
Y 10, 10, 10, 10, 10 0.123(0.980) 0.046(0.950)
10, 10, 10, 15, 15 0.112(0.977) 0.051(0.947)
5 b5, 5 5 5 0.175(0.989) 0.050(0.950)
11133 5, b, b, 10, 10 0.147(0.984) 0.050(0.952)
e 10, 10, 10, 10, 10 0.126(0.982) 0.053(0.951)
10, 10, 10, 15, 15 0.117(0.980) 0.050(0.952)
5 5, 5 5 b 0.182(0.988) 0.051(0.950)
01 05 1 3. 5 5, 5, 5, 10, 10 0.139(0.982) 0.051(0.947)
b Uy 9 10, 10, 10, 10, 10 0.125(0.982) 0.049(0.951)
10, 10, 10, 15, 15 0.110(0.980) 0.048(0.952)
5 b5, 5 5 5 0.190(0.990) 0.050(0.952)
9 11111 5, 5, b5, 10, 10 0.156(0.984) 0.051(0.951)
A 10, 10, 10, 10, 10 0.129(0.983) 0.051(0.952)
10, 10, 10, 15, 15 0.122(0.980) 0.051(0.952)
5 b5, 5 5 5 0.182(0.989) 0.050(0.952)
11133 5 b, 5, 10, 10 0.160(0.987) 0.055(0.950)
U 10, 10, 10, 10, 10 0.125(0.983) 0.047(0.949)
10, 10, 10, 15, 15 0.120(0.981) 0.049(0.949)
5 5, 5 b b 0.186(0.990) 0.052(0.952)
01 05 1.3 5 5, 5, 5, 10, 10 0.150(0.983) 0.050(0.947)
Rt 10, 10, 10, 10, 10 0.126(0.984) 0.050(0.950)
10, 10, 10, 15, 15 0.114(0.979) 0.049(0.947)
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