• Title/Summary/Keyword: Master cast accuracy

Search Result 31, Processing Time 0.024 seconds

Comparing accuracy of denture bases fabricated by injection molding, CAD/CAM milling, and rapid prototyping method

  • Lee, Suji;Hong, Seoung-Jin;Paek, Janghyun;Pae, Ahran;Kwon, Kung-Rock;Noh, Kwantae
    • The Journal of Advanced Prosthodontics
    • /
    • v.11 no.1
    • /
    • pp.55-64
    • /
    • 2019
  • PURPOSE. The accuracy of denture bases was compared among injection molding, milling, and rapid prototyping (RP) fabricating method. MATERIALS AND METHODS. The maxillary edentulous master cast was fabricated and round shaped four notches were formed. The cast was duplicated to ten casts and scanned. In the injection molding method, designed denture bases were milled from a wax block and fabricated using SR Ivocap injection system. Denture bases were milled from a pre-polymerized block in the milling method. In the RP method, denture bases were printed and post-cured. The intaglio surface of the base was scanned and surface matching software was used to measure inaccuracy. Measurements were performed between four notches and two points in the mid-palatal suture to evaluate inaccuracy. The palatine rugae resolution was evaluated. One-way analysis of variance was used for statistical analysis at ${\alpha}=.05$. RESULTS. No statistically significant differences in distances among four notches (P>.05). The accuracy of the injection molding method was lower than those of the other methods in two points of the mid-palatal suture significantly (P<.05). The degree of palatine rugae resolution was significantly higher in the injection molding method than that in other methods (P<.05). CONCLUSION. The overall accuracy of the denture base is higher in milling and RP method than the injection molding method. The degree of fine reproducibility is higher in the injection molding method than the milling or RP method.

Accuracy of a separating foil impression using a novel polyolefin foil compared to a custom tray and a stock tray technique

  • Pastoret, Marie-Helene;Krastl, Gabriel;Buhler, Julia;Weiger, Roland;Zitzmann, Nicola Ursula
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.4
    • /
    • pp.287-293
    • /
    • 2017
  • PURPOSE. To compare the dimensional accuracy of three impression techniques- a separating foil impression, a custom tray impression, and a stock tray impression. MATERIALS AND METHODS. A machined mandibular complete-arch metal model with special modifications served as a master cast. Three different impression techniques (n = 6 in each group) were performed with addition-cured silicon materials: i) putty-wash technique with a prefabricated metal tray (MET) using putty and regular body, ii) single-phase impression with custom tray (CUS) using regular body material, and iii) two-stage technique with stock metal tray (SEP) using putty with a separating foil and regular body material. All impressions were poured with epoxy resin. Six different distances (four intra-abutment and two inter-abutment distances) were gauged on the metal master model and on the casts with a microscope in combination with calibrated measuring software. The differences of the evaluated distances between the reference and the three test groups were calculated and expressed as mean (${\pm}SD$). Additionally, the 95% confidence intervals were calculated and significant differences between the experimental groups were assumed when confidence intervals did not overlap. RESULTS. Dimensional changes compared to reference values varied between -74.01 and $32.57{\mu}m$ (MET), -78.86 and 30.84 (CUS), and between -92.20 and 30.98 (SEP). For the intra-abutment distances, no significant differences among the experimental groups were detected. CUS showed a significantly higher dimensional accuracy for the inter-abutment distances with -0.02 and -0.08 percentage deviation compared to MET and SEP. CONCLUSION. The separation foil technique is a simple alternative to the custom tray technique for single tooth restorations, while limitations may exist for extended restorations with multiple abutment teeth.

EFFECT OF IMPRESSION TECHNIQUES ON ACCURACY OF MASTER CASTS FOR IMPLANT PROSTHESES (인상채득 방법이 임플란트 보철 작업모형의 정확도에 미치는 영향)

  • Hong Eun-Hee;Han Dong-Hoo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.32 no.3
    • /
    • pp.445-454
    • /
    • 1994
  • Osseointegrated implant prostheses are to provide normal function without compromising the unique interaction between the tissue and the implant. The essential requirement for the osseointegrated implant prostheses is passive fit of abutment. Therefore, the impression must be accurate and reproduciable since the resultant master cast precisely duplicates the clinical condition. The purpose of this study was to compare the accuracy of the master casts obtained from five impression techniques. Group 1 : To take impression with indirect technique and Impregum F. Group 2 : To take impression with unsplinted direct technique and Impregum F. Group 3 : To take impression with splinted direct technique and Impregum F. Group 4 : To take impression with unsplinted direct technique and Xanthano. Group 5 : To take impression with splinted dierct technique and Xanthano. The results were as follow : 1. In taking impression of Impregum F, there was no significant difference between to use of indirect technique and unsplinted direct technique.(p<0.05) 2. Unsplinted direct technique with Impregum F is less accurate than splinted direct technique with Impregum F or Xanthano and unsplinted direct technique with Xanthano.(p<0.05). 3. There was no significant difference between splinted direct technique with Impregum F and unsplinted direct technique with Xanthano.(p<0.05) 4. Splinted direct technique reproduce more accurate than unsplinted direct technique.(p<0.05) 5. Impression plaster produced less distortion than polyether.(p<0.05) As a result, splinted direct technique with Xanthano was the most accurate technique. As a result, splinted direct technique with Xanthano was the most accurate technique in this study. In addition to dimensinal changes in the materials used, positional errors were also attributed to the mechanical components used in the transfer porocess. Although the errors measured were relatively small, this study demonstrates the potential for distortions with the transfer technique used. Further study is indicated that ?the technique will be able to reproduce the intraoral relationship of implant fixtures reliably and predictably.

  • PDF

Three-dimensional analysis of the outcome of different scanning strategies in virtual interocclusal registration

  • Jiansong, Mei;Liya, Ma;Jiarui, Chao;Fei, Liu;Jiefei, Shen
    • The Journal of Advanced Prosthodontics
    • /
    • v.14 no.6
    • /
    • pp.369-378
    • /
    • 2022
  • PURPOSE. The purpose of this in vitro study was to assess whether scanning strategies of virtual interocclusal record (VIR) affect the accuracy of VIR during intraoral scanning. MATERIALS AND METHODS. Five pairs of reference cubes were added to the digital upper and lower dentitions of a volunteer, which were printed into resin casts. Subsequently, the resin casts were articulated in the maximal intercuspal position in a mechanical articulator and scanned with an industrial computed tomography system, of which the VIR was served as a reference VIR. The investigated VIR of the upper and lower jaws of the resin master cast were recorded with an intraoral scanner according to 9 designed scanning strategies. Then, the deviation between the investigated VIRs and reference VIR were analyzed, which were measured by the deviation of the distances of six selected reference points on the upper reference cubes in each digital cast to the XY-plane between the investigated VIRs and reference VIR. RESULTS. For the deviation in the right posterior dentitions, RP group (only scanning of right posterior dentitions) showed the smallest deviation. Besides, BP group (scanning of bilateral posterior dentitions) showed the smallest deviation in the left posterior dentitions. Moreover, LP group (scanning of left posterior dentitions) showed the smallest deviation in the anterior dentitions. For the deviation of full dental arches, BP group showed the smallest deviation. CONCLUSION. Different scanning strategies of VIR can influence the accuracy of alignment of virtual dental casts. Appropriate scanning strategies of VIR should be selected for different regions of interest and edentulous situations.

Effect of internal structures on the accuracy of 3D printed full-arch dentition preparation models in different printing systems

  • Teng Ma;Tiwu Peng;Yang Lin;Mindi Zhang;Guanghui Ren
    • The Journal of Advanced Prosthodontics
    • /
    • v.15 no.3
    • /
    • pp.145-154
    • /
    • 2023
  • PURPOSE. The objective of this study was to investigate how internal structures influence the overall and marginal accuracy of full arch preparations fabricated through additive manufacturing in different printing systems. MATERIALS AND METHODS. A full-arch preparation digital model was set up with three internal designs, including solid, hollow, and grid. These were printed using three different resin printers with nine models in each group. After scanning, each data was imported into the 3D data processing software together with the master cast, aligned and trimmed, and then put into the 3D data analysis software again to compare the overall and marginal deviation whose results are expressed using root mean square values and color maps. To evaluate the trueness of the resin model, the test data and reference data were compared, and the precision was evaluated by comparing the test data sets. Color maps were observed for qualitative analysis. Data were statistically analyzed by one-way analysis of variance and Bonferroni method was used for post hoc comparison (α = .05). RESULTS. The influence of different internal structures on the accuracy of 3D printed resin models varied significantly (P < .05). Solid and grid models showed better accuracy, while the hollow model exhibited poor accuracy. The color maps show that the resin models have a tendency to shrink inwards. CONCLUSION. The internal structure design influences the accuracy of the 3D printing model, and the effect varies in different printing systems. Irrespective of the kind of printing system, the printing accuracy of hollow model was observed to be worse than those of solid and grid models.

DIMENSIONAL ACCURACY OF EPOXY RESINS AND THEIR COMPATIBILITY WITH IMPRESSION MATERIALS (EPOXY RESIN의 정확도와 인상재와의 친화성에 관한 연구)

  • Chang, Su-Kyoung;Chang, Ik-Tae;Yim, Soon-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.37 no.3
    • /
    • pp.383-394
    • /
    • 1999
  • The indirect technique for making cast restoration requires that dies be as accurate and durable as possible. Currently, stone is the most commonly used material for die. However, it has some problems such as the weakness in its strength and low abrasion resistance. Recently, epoxy resin die systems have become available. The purpose of this study was to examine two commercially available resin die systems and evaluate some characteristics for their clinical performance. This study evaluated the dimensional accuracy of epoxy resins and their wettability with impression materials. In this study, the first experiment was about dimensional accuracy of different die materials. The master model was made of stainless steel. 10 models were made of two epoxy resins (Die-epoxy, Tri-epoxy) and a die stone (Fujirock) each. Occlusal diameter (Dimension I), occluso-gingival height (Dimension II), and interabutment distance (Dimension III) were measured in each model. Next, the contact angles of die materials with impression materials were observed. The blocks were made of polyether, hydrophilic additional silicone, polysulfide impression materials. By drop-ping the same amount (0.05ml) of Tri-epoxy, Die-epoxy, and die stone on the blocks, 10 samples of each die material were made. After setting of materials, the contact angles were measured. The results of this study were as follows. 1. The expansion of stone die and the shrinkage of resin dies in occlusal diameter were observed, and stone and Tri-epoxy were expanded and Die-epoxy was shrinked in occluso-gingival height. There was little change among materials in interabutment distance (p<0.05). 2. In comparison with the master model Tri-epoxy had the least variation in measurement of the three die systems examined. Die-epoxy was next, and die stone showed the greatest variation. 3. The compatibility of die stone for polyether, hydrophilic additional silicone, polysulfide decreased in order, wherease epoxy materials had the decreased compatibility for polyether and polysulnde, hydrophilic additional silicone in order. It was not statistically different between polyether and polysulfide (p<0.05). 4. The contact angles of Tri-epoxy, Die-epoxy, die stone were getting bigger in order.

  • PDF

Effect of posterior span length on the trueness and precision of 3 intraoral digital scanners: A comparative 3-dimensional in vitro study

  • Fattouh, Mohamed;Kenawi, Laila Mohamed Mohamed;Fattouh, Hesham
    • Imaging Science in Dentistry
    • /
    • v.51 no.4
    • /
    • pp.399-406
    • /
    • 2021
  • Purpose: This in vitro study measured and compared 3 intraoral scanners' accuracy (trueness and precision) with different span lengths. Materials and Methods: Three master casts were prepared to simulate 3 different span lengths (fixed partial dentures with 3, 4, and 5 units). Each master cast was scanned once with an E3 lab scanner and 10 times with each of the 3 intraoral scanners (Trios 3, Planmeca Emerald, and Primescan AC). Data were stored as Standard Tessellation Language (STL) files. The differences between measurements were compared 3-dimensionally using metrology software. Data were analyzed using 1-way analysis of variance with post hoc analysis by the Tukey honest significant difference test for trueness and precision. Statistical significance was set at P<0.05. Results: A statistically significant difference was found between the 3 intraoral scanners in trueness and precision (P<0.05). Primescan AC showed the lowest trueness and precision values(36.8 ㎛ and 42.0 ㎛;(39.4 ㎛ and 51.2 ㎛; and 54.9 ㎛ and 52.7 ㎛) followed by Trios 3 (38.9 ㎛ and 53.5 ㎛; 49.9 ㎛ and 59.1 ㎛; and 58.1 ㎛ and 64.5 ㎛) and Planmeca Emerald (60.4 ㎛ and 63.6 ㎛; 61.3 ㎛ and 69.0 ㎛; and 70.8 ㎛ and 74.3 ㎛) for the 3-unit, 4-unit, and 5-unit fixed partial dentures, respectively. Conclusion: Primescan AC had the best trueness and precision, followed by Trios 3 and Planmeca Emerald. Increasing span length reduced the trueness and precession of the 3 scanners; however, their values were within the accepted successful ranges.

Comparative accuracy of implant impression techniques with different splinting materials (임플란트 인상채득 방법과 인상용 코핑 연결 고정에 따른 정확성 비교)

  • Ki-Yoon Hong;Soo-Yeon Shin
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.39 no.1
    • /
    • pp.9-20
    • /
    • 2023
  • Purpose: We investigated the effect of open tray impression using pick-up impression coping and close tray impression using transfer impression coping on the accuracy of impression in edentulous patients on their mandibular parts. the effect of material types of pick-up type impression copings for splinting in open tray impression on the accuracy of impression was also evaluated. Materials and Methods: Two implant fixtures were implanted in parallel in the left molar of the mandibular in the shape of a mandibular partial edentulous model. The 40 individual trays were fabricated using 3D printer. The prepared individual trays were classified into 4 groups (i.e., PN, PG, PH, and TN groups), and a total of 40 impression-takings were conducted. A master cast was connected to a Scan Body. The converted STL file was super-imposed on the scan images of the various groups. Results: The order of standard deviation values decreased as follows: PN (0.2343 ± 0.0844 mm), TN (0.2192 ± 0.0840 mm), indicating that the high accuracy of impression for TN group. In addition, for the comparison results between the material types used in splinting the open tray impression, the PH group showed a relatively lower standard deviation (0.1910 ± 0.1176 mm) than that of the PN group (0.2343 ± 0.0844 mm), PG group (0.2556 ± 0.1082 mm). Conclusion: The acrylic resin synthesized by light-induced polymerization exhibited a higher accuracy of impression taking than that of autopolymerizing acrylic resin. Meanwhile, the accuracy of impression taking was not dependent on the implant impression taking method or the presence of connection/fixation of impression copings.

The Accuracy of Master Cast for Implant Prosthesis According to the Types of Impression Tray and Splinting Methods of Impression Copings (인상용 트레이의 종류와 인상용 코핑의 연결고정이 임플랜트 주모형의 정확성에 미치는 영향)

  • Lee, Jee-Hyuk;Choi, Yu-Sung;Cho, In-Ho
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.26 no.4
    • /
    • pp.433-445
    • /
    • 2010
  • The aim of this study was to evaluate the fixation effect by connecting impression copings and to compare the three types of impression trays which were used in open tray impression technique. Experimental groups used 3 types of impression trays which are custom tray, plastic metal combination tray and polycarbonate stock tray. These three groups were subdivided into splinted and non-splinted impression copings group. The total number of experimental groups was six. 10 specimens were made for each group. We used 1-screw test, observing the specimen on which only one side abutment of reference framework was fixated with 20 Ncm. The gap between implant analogue and abutment of the other side was observed by stereo microscope. It was measured at 6 points in each specimen. Measuring value was selected when same result was revealed 3 times. Recorded data were statistically analyzed. Whether impression copings were splinted or not, there was no significant difference among custom tray group, plastic metal combination tray group, and polycarbonate stock tray group. Significant statistical difference in vertical fit discrepancy was found between splinted and non-splinted impression copings group with custom tray, plastic metal combination tray and polycarbonate stock tray (p<0.05).

A comparative study on the accuracy of impression body according to the types of impression tray (임플란트 인상 채득 시 트레이 종류에 따른 인상체의 정확도에 관한 비교 연구)

  • Yi, Hyun-Jung;Lim, Jong-Hwa;Lee, Joon-Seok
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.48 no.1
    • /
    • pp.48-54
    • /
    • 2010
  • Purpose: The objective of this study was to evaluate and compare the accuracy of impression body taking by the closed and the open tray impression technique with 3 types of impression tray. Individual tray, metal stock tray and polycarbonate tray were used. Materials and methods: Nine closed tray impressions were taken by individual tray, metal stock tray and polycarbonate stock tray, respectively with polyether impression material. 9 open tray impressions were also acquired by same manner. Precision analysis on the master models was performed by attaching the reference frameworks with alternate single screws and measuring the vertical fit discrepancy of respective analogues in working cast with a stereo microscope. Data were analyzed by 1 way ANOVA and independent t-test. Results: The average fit accuracy of impression bodies was calculated. With the closed tray impression technique, there were significant statistical differences in vertical fit discrepancy according to the types of tray. The individual tray group showed the lowest value and the polycarbonate stock tray group represented the highest. With the open tray impression technique, there was no significant difference in vertical fit discrepancy. Significant statistical difference in vertical fit discrepancy was found between the open and the closed impression technique with the polycarbonate stock tray. Conclusion: From the results above, more precise impressions could be acquired by the rigid individual tray compared with the polycarbonate stock tray. It was hard to get consistent accuracy impressions by the closed tray impression technique with polycarbonate stock trays.