• Title/Summary/Keyword: Mass Moment of Inertia

Search Result 128, Processing Time 0.03 seconds

A Robust Neural Control of Robot Manipulator Operated Under the Sea (해저작업 로봇 매니퓰레이터의 강건한 신경망 제어기)

  • 박예구;최형식;이민호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.337-341
    • /
    • 1995
  • This paper presents a robust control scheme using a multilayer network for the robot manipulator operating under the sea which has large uncertainties such as the buoyancy and the added mass/moment of inertia. The multilayer neural network acts as a compensator of the conventional sliding mode controller to maintain the control performance when the initial assumptions of uncertainty bounds are not valid. By the computer simulation results, the proposed control scheme dose not effectively compensate large uncertainties, but also reduces the steady stare error of the conventional sliding mode controller.

  • PDF

Rotor Dynamics Analysis of a Spindle System for a High speed Grinding Machine (고속 연삭기 주축 시스템의 회전체 역학 해석)

  • 최영휴
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.714-719
    • /
    • 2000
  • This paper describes a transfer matrix approach to analyze the dynamics of a high sped flexible rotor system supported at 2 positions by five ceramic bearings. The rotor system is modelled as lumped parameters in which many factors are considered not only lumped inertia or mass, bending moment, shear force but also gyroscopic effect and unbalance. The equation of motion is derived in the transfer matrix form, from which the eigenvalues equation is also derived. The transfer natural frequencies and modes. The eigenvalues, eigenmodes, campbell diagram, whirling critical speed, whirling modes, and the response of unbalance are calculated and discussed.

  • PDF

A New Design Analysis of Flywheel (플라이휠의 새로운 설계 해석)

  • 김재호;신영재
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.3
    • /
    • pp.1063-1066
    • /
    • 1991
  • 본 연구에서는 기계 기구의 각속도 변동을 줄이는데 사용되는 플라이휠을 운동에너지의 법칙을 이용하여 해석하고, 주어진 허용 각속도 변동률을 정확히 만족하 는 플라이휠의 크기를 결정하는 새로운 방법을 제시하였다. 또한 수치 해석을 통하 여 본 해석방법에 의해 설계된 플라이휠과 종래 방법에 의한 플라이휠의 성능을 비교 하였다.

Bar Formation and Evolution in Disk Galaxies with Classical Bulges

  • Seo, Woo-Young;Kim, Woong-Tae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.37.2-37.2
    • /
    • 2019
  • To study the effects of central mass concentration on the formation and evolution of galactic bars, we run fully self-consistent simulations of Milky Way-sized, isolated galaxies with initial classical bulges. We let the mass of a classical bulge mass less than 20% of the total disk mass, and vary the central concentration of a dark matter halo. We find that both classical bulge and halo concentration delay the bar formation and weaken the bar strength. The presence of a bulge increases the initial rotational velocity near the center and hence the bar pattern speed. Bars in galaxies with a more concentrated halo slowdown relatively rapidly as they lose their angular momentum through interaction with the halo. In some of our models, bars do not experience slowdown at the expense of the decrease in their moment of inertia as the bar evolves, with the resulting pattern speed similar to that of the bar in the Milky Way.

  • PDF

Experimental Identification of Rigid Body Properties by Direct System Identification Method (특성행렬 직접 규명법에 의한 강체특성의 실험적 추정)

  • Jeong, W.B.;Ryu, S.J.;Koe, D.M.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.9
    • /
    • pp.22-29
    • /
    • 1995
  • An experimental method to identify the rigid properties (mass, moment of inertia, center of mass) of mounted structures is presented. A direct system identification method is developed and applied to identify the mass, damping and stiffness martix directly from the translational response of vibration testing. Conventional method is sensitive to noise since it needs artificial rotational response of temporary center of mass which is made by the linear transformation of translational response. A presented method needs only the translational response, and it is robuster to noise than conventional method. Several experimental and numerical implementations show the presented method is effective.

  • PDF

Spacecraft Spin Rate Change due to Propellant Redistribution Between Tanks

  • Choi, Kyu-Hong
    • Journal of Astronomy and Space Sciences
    • /
    • v.1 no.1
    • /
    • pp.23-34
    • /
    • 1984
  • A bubble trapped in the liquid manifold of INTELSAT IV F-7 spacecraft caused a mass imbalance between the System 1 propellant tanks and a wobble half angle of 0.38 degree to 0.48 degree. A maneuver on May 14, 1980 passed the bubble through the axial jet and allowed propellant to redistribute. A 0.2 rpm change in sin rate was observed with an exponential decay time constant of 6 minutes. In this paper, moment of inertia, tank geometry and hydrodynamic models are derived to match the observed spin rate data. The values of the total mass of propellant considered were 16, 19 and 20 kgs with corresponding mass imbalances of 14.3, 15 and 15.1 Kgs, respectively. The result shows excellent agreement with observed spin rate data but it was necessary to assume a greater mass of hydrazine in the tanks than propellant accounting indicated.

  • PDF

Robust Adaptive Control Simulation of Wire-Suspended Parallel Manipulator

  • Farahani, Hossein S.;Kim, Bo-Hyun;Ryu, Je-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.46-51
    • /
    • 2004
  • This paper presents an adaptive control method based on parameter linearization for incompletely restrained wire-suspended mechanisms. The main purpose of this control method is utilizing it in a walking assist service robot for elderly people. This method is computationally simple and requires neither end-effector acceleration feedback nor inversion of estimated inertia matrix. In the proposed adaptive control law, mass, moment of inertia and external force and torque on the end-effector are considered as components of parameter adaptation vector. Nonlinear simulation for walking an elderly shows the effectiveness of the parameter adaptation law.

  • PDF

Parameter Sensitivity Analysis of Autonomous Robot Vehicle for Trajectory Error and Friction Force (자율 주행 반송차의 궤적 오차와 마찰력에 대한 매개 변수의 민감도 해석)

  • 김동규;박기환;김수현;곽윤근
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.2
    • /
    • pp.115-126
    • /
    • 1996
  • In order to obtain the principal design data for developing the Autonomous Robot Vehicle(ARV), Sensitivity analysis on the trajectory error and friction force with respect to the dynamic parameters is performed. In the straight motion, the trajectory error has been proved to be much affected by the mass variance of the ARV while the lateral friction force is much affected by the location of the mass center. In the curved motion, the effect of mass and moment of inertia is considered importantly. In addition, the lateral offset gives more effect than the geometric dimension of the ARV on the trajectory errors and friction force.

  • PDF

Rotor Coastdown and Acceleration Performances of High-speed Motors Supported on Ball Bearings and Gas Foil Bearings (볼 베어링 및 가스 포일 베어링으로 지지되는 고속 전동기의 회전체 관성정지 및 가속 성능 연구)

  • Mun, HyeongWook;Seo, JungHwa;Kim, TaeHo
    • Tribology and Lubricants
    • /
    • v.35 no.2
    • /
    • pp.123-131
    • /
    • 2019
  • This study characterizes the coastdown performances of two small electric motors supported on high-speed ball bearings (BBs) and gas foil bearings (GFBs), and it predicts their acceleration performances. The two motors have identical permanent magnetic rotors and mating stators. However, the shaft of the GFBs has a larger mass and polar/transverse moments of inertia than that of the BBs. Motor coastdown tests demonstrate that the rotor speed decreases linearly with the BBs and nonlinearly with the GFBs. A simple model for the BBs predicts a constant drag torque and linear decay of speed with time. The test data validate the model predictions. For the GFBs, the hydrodynamic lubrication model predictions reveal that the drag torque increases linearly with speed, and the speed decreases exponentially with time. The predictions agree very well with the test data in the speed range of 100-30 krpm. The boundary lubrication model predicts a constant drag torque and linear decay of speed with time. The predictions agree well with the test data below 15 krpm. Mixed lubrication occurs in the speed range of 30-15 krpm. Rotor acceleration performances are predicted based on the characteristics of deceleration performances. The GFBs require more time to reach 100,000 krpm than the BBs because of their larger shaft polar moment of inertia. However, predictions for the assumed identical polar moment of inertia reveal that the GFBs have a nearly identical acceleration performance to that of the BBs with a motor torque greater than $0.03N{\cdot}m$.

Real-Time Estimation of Yaw Moment of Inertia of a Travelling Heavy Duty Truck (주행하는 대형 트럭의 요관성모멘트 실시간 추정)

  • Lee, Seung-Yong;Nakano, Kimihiko;Kim, Se-Kwang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.3
    • /
    • pp.205-211
    • /
    • 2017
  • To achieve an advanced control of automobiles, it is necessary to acquire the values of the parameters of a vehicle in real time to conduct precise vehicle control practices such as automatic platooning control. Vehicle control is especially required in controlling trucks, as the mass and inertia change widely according to the loading conditions. Thereafter, we propose to estimate the yaw moment of inertia of the truck in real-time during travelling, by applying the dual Kalman filter algorithm, which estimates the state variables and values of the parameters simultaneously in real-time. The simulation results show that the proposed method is effective for the estimation, which uses commercial software for simulating and analyzing the vehicle dynamics.