Proceedings of the Korea Water Resources Association Conference
/
2016.05a
/
pp.197-197
/
2016
Forecasting future drought events in a region plays a major role in water management and risk assessment of drought occurrences. The creeping characteristics of drought make it possible to mitigate drought's effects with accurate forecasting models. Drought forecasts are inevitably plagued by uncertainties, making it necessary to derive forecasts in a probabilistic framework. In this study, a new probabilistic scheme is proposed to forecast droughts, in which a discrete-time finite state-space hidden Markov model (HMM) is used aggregated with the Representative Concentration Pathway 8.5 (RCP) precipitation projection (HMM-RCP). The 3-month standardized precipitation index (SPI) is employed to assess the drought severity over the selected five stations in South Kore. A reversible jump Markov chain Monte Carlo algorithm is used for inference on the model parameters which includes several hidden states and the state specific parameters. We perform an RCP precipitation projection transformed SPI (RCP-SPI) weight-corrected post-processing for the HMM-based drought forecasting to derive a probabilistic forecast that considers uncertainties. Results showed that the HMM-RCP forecast mean values, as measured by forecasting skill scores, are much more accurate than those from conventional models and a climatology reference model at various lead times over the study sites. In addition, the probabilistic forecast verification technique, which includes the ranked probability skill score and the relative operating characteristic, is performed on the proposed model to check the performance. It is found that the HMM-RCP provides a probabilistic forecast with satisfactory evaluation for different drought severity categories, even with a long lead time. The overall results indicate that the proposed HMM-RCP shows a powerful skill for probabilistic drought forecasting.
The low flow analysis is an important part in water resources engineering. Also, the results of low flow frequency analysis can be used for design of reservoir storage, water supply planning and design, waste-load allocation, and maintenance of quantity and quality of water for irrigation and wild life conservation. Especially, for identification of the uncertainty in frequency analysis, the Bayesian approach is applied and compared with conventional methodologies in at-site low flow frequency analysis. In the first manuscript, the theoretical background for the Bayesian MCMC (Bayesian Markov Chain Monte Carlo) method and Metropolis-Hasting algorithm are studied. Two types of the prior distribution, a non-data- based and a data-based prior distributions are developed and compared to perform the Bayesian MCMC method. It can be suggested that the results of a data-based prior distribution is more effective than those of a non-data-based prior distribution. The acceptance rate of the algorithm is computed to assess the effectiveness of the developed algorithm. In the second manuscript, the Bayesian MCMC method using a data-based prior distribution and MLE(Maximum Likelihood Estimation) using a quadratic approximation are performed for the at-site low flow frequency analysis.
This paper conducts a statistical analysis of extreme values for both daily log-returns and daily negative log-returns, which are computed using a collection of KOSPI data from January 3, 1998 to August 31, 2011. The Poisson-GPD model is used as a statistical analysis model for extreme values and the maximum likelihood method is applied for the estimation of parameters and extreme quantiles. To the Poisson-GPD model is also added the Bayesian method that assumes the usual noninformative prior distribution for the parameters, where the Markov chain Monte Carlo method is applied for the estimation of parameters and extreme quantiles. According to this analysis, both the maximum likelihood method and the Bayesian method form the same conclusion that the distribution of the log-returns has a shorter right tail than the normal distribution, but that the distribution of the negative log-returns has a heavier right tail than the normal distribution. An advantage of using the Bayesian method in extreme value analysis is that there is nothing to worry about the classical asymptotic properties of the maximum likelihood estimators even when the regularity conditions are not satisfied, and that in prediction it is effective to reflect the uncertainties from both the parameters and a future observation.
Korean income data obtained from Korea Labor Panel Survey shows excessive zeros, which may not be properly explained by the Tobit model. In this paper, we analyze the data using a zero-inflated Tobit model to incorporate excessive zeros. A zero-inflated Tobit model consists of two stages. In the first stage, individuals with 0 income are divided into two groups: genuine zero group and random zero group. Individuals in the genuine zero group did not participate labor market since they have no intention to do so. Individuals in the random zero group participated labor market but their incomes are very low and truncated at 0. In the second stage, the Tobit model is assumed to a subset of data combining random zeros and positive observations. Regression models are employed in both stages to obtain the effect of explanatory variables on the participation of labor market and the income amount. Markov chain Monte Carlo methods are applied for the Bayesian analysis of the data. The proposed zero-inflated Tobit model outperforms the Tobit model in model fit and prediction of zero frequency. The analysis results show strong evidence that the probability of participating in the labor market increases with age, decreases with education, and women tend to have stronger intentions on participating in the labor market than men. There also exists moderate evidence that the probability of participating in the labor market decreases with socio-economic status and reserved wage. However, the amount of monthly wage increases with age and education, and it is larger for married than unmarried and for men than women.
Journal of Korean Society of Coastal and Ocean Engineers
/
v.25
no.6
/
pp.394-404
/
2013
In the present study, the characteristics of spectral peakedness parameter $Q_p$, bandwidth parameter ${\varepsilon}$, and spectral width parameter ${\nu}$ were analyzed as a first step to define the swell waves quantitatively. For the analysis, the joint probability density function of significant wave heights and peak periods were newly developed. The MCMC(Markov Chain Monte Carlo) simulations have been performed to generate the significant wave heights and peak periods from the developed probability density functions. Applying the simulated significant wave heights and peak periods to the theoretical wave spectrum models, the spectral shapes parameters were obtained and analyzed. Among the spectral shape parameters, only the spectral peakedness parameter $Q_p$, is shown to be independent with the significant wave height and peak wave period. It also best represents the peakedness of the spectral shape, and henceforth $Q_p$ should be used to define the swell waves with a wave period. For the field verification of the results, wave data obtained from Hupo port and Ulleungdo were analyzed and results showed the same trend with the MCMC simulation results.
Kim, Tae-Jeong;Jeong, Ga-In;Kim, Ki-Young;Kwon, Hyun-Han
Journal of Korea Water Resources Association
/
v.48
no.10
/
pp.793-806
/
2015
The simulation of natural streamflow at ungauged basins is one of the fundamental challenges in hydrology community. The key to runoff simulation in ungauged basins is generally involved with a reliable parameter estimation in a rainfall-runoff model. However, the parameter estimation of the rainfall-runoff model is a complex issue due to an insufficient hydrologic data. This study aims to regionalize the parameters of a continuous rainfall-runoff model in conjunction with a Bayesian statistical technique to consider uncertainty more precisely associated with the parameters. First, this study employed Bayesian Markov Chain Monte Carlo scheme for the estimation of the Sacramento rainfall-runoff model. The Sacramento model is calibrated against observed daily runoff data, and finally, the posterior density function of the parameters is derived. Second, we applied a multiple linear regression model to the set of the parameters with watershed characteristics, to obtain a functional relationship between pairs of variables. The proposed model was also validated with gauged watersheds in accordance with the efficiency criteria such as the Nash-Sutcliffe efficiency, index of agreement and the coefficient of correlation.
College tuition is a significant economic, social, and political issue in Korea. We conduct a Bayesian analysis of a hierarchical model to address the factors related to college tuition based on a survey data collected by Statistics Korea. A binary response variable is selected depending on if more than 70% of tuition costs are supported by parents, and a hierarchical Probit model is constructed with areas as groups. A set of explanatory variables is selected from a factor analysis of available variables in the survey. A Markov chain Monte Carlo algorithm is used to estimate parameters. From the analysis results, income and stress are significantly related to college tuition support from parents. Parents with high income tend to support children's college tuition and students with parents' financial support tend to be mentally less stressed; subsequently, this shows that the economic status of parents significantly affects the mental health of college students. Gender, a healthy life style, and college satisfaction are not significant factors. Comparing areas in terms of the degrees of correlation between stress/income and tuition support from parents, students in Kangwon-do are the most mentally stressed when parents' support is limited; in addition, the positive correlation between parents support and income is stronger in big cities compared to provincial areas.
Seasonality of hydrologic extreme variable is a significant element from a water resources managemental point of view. It is closely related with various fields such as dam operation, flood control, irrigation water management, and so on. Hydrological frequency analysis conjunction with partial duration series rather than block maxima, offers benefits that include data expansion, analysis of seasonality and occurrence. In this study, nonstationary frequency analysis based on the Bayesian model has been suggested which effectively linked with advantage of POT (peaks over threshold) analysis that contains seasonality information. A selected threshold that the value of upper 98% among the 24 hours duration rainfall was applied to extract POT series at Seoul station, and goodness-fit-test of selected GEV distribution has been examined through graphical representation. Seasonal variation of location and scale parameter ($\mu$ and $\sigma$) of GEV distribution were represented by Fourier series, and the posterior distributions were estimated by Bayesian Markov Chain Monte Carlo simulation. The design rainfall estimated by GEV quantile function and derived posterior distribution for the Fourier coefficients, were illustrated with a wide range of return periods. The nonstationary frequency analysis considering seasonality can reasonably reproduce underlying extreme distribution and simultaneously provide a full annual cycle of the design rainfall as well.
A method of constructing a war simulation based on Bayesian Inference was proposed as a method of constructing heterogeneous historical war data obtained with a time difference into a single model. A method of applying a linear regression model can be considered as a method of predicting future battles by analyzing historical war results. However it is not appropriate for two heterogeneous types of historical data that reflect changes in the battlefield environment due to different times to be suitable as a single linear regression model and violation of the model's assumptions. To resolve these problems a Bayesian inference method was proposed to obtain a post-distribution by assuming the data from the previous era as a non-informative prior distribution and to infer the final posterior distribution by using it as a prior distribution to analyze the data obtained from the next era. Another advantage of the Bayesian inference method is that the results sampled by the Markov Chain Monte Carlo method can be used to infer posterior distribution or posterior predictive distribution reflecting uncertainty. In this way, it has the advantage of not only being able to utilize a variety of information rather than analyzing it with a classical linear regression model, but also continuing to update the model by reflecting additional data obtained in the future.
Estimating genetic interaction effects in animal genomics would be one of the most challenging studies because the phenotypic variation for economically important traits might be largely explained by interaction effects among multiple nucleotide sequence variants under various environmental exposures. Genetic improvement of economic animals would be expected by understanding multi-locus genetic interaction effects associated with economic traits. Most analyses in animal breeding and genetics, however, have excluded the possibility of genetic interaction effects in their analytical models. This review discusses a historical estimation of the genetic interaction and difficulties in analyzing the interaction effects. Furthermore, two recently developed methods for assessing genetic interactions are introduced to animal genomics. One is the restricted partition method, as a nonparametric grouping-based approach, that iteratively utilizes grouping of genotypes with the smallest difference into a new group, and the other is the Bayesian method that draws inferences about the genetic interaction effects based on their marginal posterior distributions and attains the marginalization of the joint posterior distribution through Gibbs sampling as a Markov chain Monte Carlo. Further developing appropriate and efficient methods for assessing genetic interactions would be urgent to achieve accurate understanding of genetic architecture for complex traits of economic animals.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.