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ABSTRACT : Estimating genetic interaction effects in animal genomics would be one of the most challenging studies because the 
phenotypic variation for economically important traits might be largely explained by interaction effects among multiple nucleotide 
sequence variants under various environmental exposures. Genetic improvement of economic animals would be expected by 
understanding multi-locus genetic interaction effects associated with economic traits. Most analyses in animal breeding and genetics, 
however, have excluded the possibility of genetic interaction effects in their analytical models. This review discusses a historical 
estimation of the genetic interaction and difficulties in analyzing the interaction effects. Furthermore, two recently developed methods 
for assessing genetic interactions are introduced to animal genomics. One is the restricted partition method, as a nonparametric 
grouping-based approach, that iteratively utilizes grouping of genotypes with the smallest difference into a new group, and the other is 
the Bayesian method that draws inferences about the genetic interaction effects based on their marginal posterior distributions and 
attains the marginalization of the joint posterior distribution through Gibbs sampling as a Markov chain Monte Carlo. Further 
developing appropriate and efficient methods for assessing genetic interactions would be urgent to achieve accurate understanding of 
genetic architecture for complex traits of economic animals. (Key Words : Animal Genomics, Bayesian Inference, Epistasis, Gibbs 
Sampling, Single Nucleotide Polymorphism)

INTRODUCTION

Providing comprehensive maps of nucleotide sequence 
variants in various species has been a great concern for 
many geneticists. As a result, genomic properties started to 
be partially revealed at least on the aspect of their 
compositions. Two independent human genomes are known 
to be roughly 99.9% identical, and only a small portion has 
variability (Kruglyak and Nickerson, 2001). Nevertheless, 
at least millions of variants are available, and these variants 
account for all the heritable phenotypic variability among 
individuals. Many efforts have been made to find genetic 
factors susceptible to complex diseases in humans, and 
substantial advances have been achieved in understanding 
the genetic dissection of complex traits of biomedical 
importance (McCarthy et al., 2008). Geneticists expect that 
such findings in human genomes may apply to other 
animals although their genome projects are still in the 
working.

One of the main goals in animal breeding and genetics 
is identifying the relationship of the nucleotide sequence 
variants with economically important phenotypes in order 
to select genetically superior animals whose genetic 
resources would be inherited to the next generation. The 
genetic architecture of the economic traits is quite limitedly 
known because of the difficulty in estimating the influence 
of multiple genes on such complex traits. The phenotypic 
variability for the complex traits might be largely explained 
by interactions among multiple genes under various 
environmental exposures (Figure 1). A genetic dissection of 
complex trait needs more extensive views of biology and 
more systematic approaches in genomic analysis. The 
potential interaction effects have not been analyzed in many 
genetic studies of complex traits because of the increasing 
number of genetic interaction parameters (Frankel and 
Schork, 1996). Therefore, the assumptions on the 
independence of the individual locus effects in analytical 
models might lead to wrong inferences on the relationship 
between genetic effects and phenotypic observations. It is 
timely to consider the next step for investigating 
genomewide association with complex traits. This review
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Figure 1. Influences of genetic interaction effects on complex traits under various environmental exposures. Puzzle piece indicates gene, 
and circles with different shapes, sizes, and colors indicate various environments. Thickness of arrow indicates degree of impact on the 
complex traits.

discusses the historical estimation of genetic interaction and 
difficulties in analyzing the interaction effects and 
introduces recently developed methods for assessing genetic 
interaction to animal genomics.

A HISTORICAL LOOK AT ESTIMATING 
GENE INTERACTION

Various concepts of gene interaction or epistasis have 
been used in quantitative genetics, and its definition was 
recently extended even to the interaction between different 
genes each from a different individual (Wolf, 2000). One 
example of this genome-by-genome interaction might be 
the regulations genetically coordinated by maternal, 
embryonic, and endospermic tissues in a developing seed 
(Walbot and Evans, 2003). In this article, we are, however, 
focusing on a classical meaning of genetic interaction that a 
genotypic effect at a gene is influenced by another genotype 
at another gene on the same genome (Falconer and Mackay, 
1996). Another important concept of the genetic interaction 
here is not individual functional epistasis, but the 
population stochastic epistasis (Moore and Williams, 2005). 
The genetic interaction effects were statistically introduced 
by Fisher (1918) by decomposing genetic variance into 
additive, dominance, and epistatic variances. Then, many 
statistical geneticists have treated the epistatic effects as 
interaction terms in a regression on allelic effects and 
expanded to specific situations in their analytical models 
(Cockerham, 1954; Hansen and Wagner, 2001). These 
conventional genetic interaction models worked reasonably 
with at least a limited number of genetic variants (2-3).

PROBLEMS IN ESTIMATING 
GENE INTERACTION

Statistical modeling of genetic interaction becomes 
quite difficult as the number of genetic loci is increased. 
First of all, if we make assumption on the specific way of 
genetic interaction, this assumption can be inappropriate for 
many genetic interaction analyses because genes interact in 
a variety of ways. One of the difficulties lies on a large 
number of parameters to accommodate the various forms of 
genetic interactions. The increased number of parameters 
leads to the increased number of statistical tests and thus 
results in the increased number of spurious statistical 
significances. Various multiple comparison testing methods 
have been developed to reduce such false positives 
(Benjamini and Hochberg, 1995; Efron and Tibshirani, 
2002). Although genetic interaction is statistically 
significant, a question arises if the genetic interaction is 
biologically meaningful. This is the inevitable question 
without any biological evidence.

Lastly and most importantly, a difficulty in estimating 
genetic interactions lies on sample size and statistical power. 
The amount of genotyping required might be reduced using 
a multistage discovery of nucleotide variants associated 
with complex traits, which maintained the statistical power 
of test (Hirschhorn and Daly, 2005). This strategy can be 
efficient for the discovery of individual locus effects, but a 
huge sample size is still required even in the initial stage. 
Another problem in practice was that most analyses have 
aimed to obtain the most parsimonious statistical model for 
genetic dissection of complex traits. This actually led to



126 Lee and Kim (2009) Asian-Aust. J. Anim. Sci. 22(1):124-130

No. of Groups No. of Ways of Partitioning

255

3,025

7,770

6,951

2,646

462

36

WM

Total (2〜9) 21,146

Figure 2. Number of ways of partitioning 9 genotypes into 2 to 9 groups with an example of 2 nucleotide sequence variants in 
combinatorial partition method. Two alleles are assumed for each nucleotide sequence variant, hence there are 3 genotypes for each 
variant and 9 combined genotypes for 2 variants. Each cell indicates the combined genotype.

ignoring the potential genetic interaction effects in the 
genetic analysis, especially without sin이e-locus additive 
and dominance effects (Carlborg and Haley, 2004). Another 
major problem has arisen with a dramatically increasing 
number of nucleotide sequence variants from genome 
projects. The classical epistatic model that included all the 
possible genetic interaction effects among multiple variants 
has shown a drawback of reduced degrees of freedom due 
to increased parameters for genetic interaction. This might 
lead to a potentially low power or a non-estimable statistic 
in analysis of genetic interaction. Solving or attenuating the 
problems addressed in this section has been major 
challenges for statistical geneticists, and as a result, recent 
advances in estimating genetic interaction effects were 
made possible.

PARTITIONING MULTI-LOCUS GENOTYPES

The methods for estimating genetic interaction effects 
were recently proposed by a nonparametric approach of 
grouping multi-locus genotypes to overcome the problems 
in the analysis with the conventional genetic interaction 
model. One of the methods by grouping multi-locus 
genotypes was called the combinatorial partition method 
(CPM). With CPM, subgroups of multi-locus genotypes that 
could explain phenotypic variability were identified by 

evaluating all possible partitions (Nelson et al., 2001). The 
best genotypic partition was determined by iteratively 
evaluating the variability with partitioned subsets and then 
by cross validating genotypic partitions that explained a 
significant phenotypic variability. Although the CPM 
provides a good strategy for evaluating high-dimensional 
genetic interaction effects, this method has the disadvantage 
of computational burdens dramatically increased with a 
large number of nucleotide sequence variants the number of 
ways to partition 5 genotypes into k groups can be 
calculated by the following formula for the Sterling's 
number of the second kind (Comtet, 1974).

S ")=K S(t)W ki)'

This formula shows that tedious computations are 
required to obtain the possible partitions using CPM. For 
example, even with two loci as in Figure 2, the number of 
ways to partition 9 genotypes into 2 groups is 255, the 
number of ways to partition 9 genotypes into 3 groups is 
3,025, the number of ways to partition 9 genotypes into 4 
groups is 7,770, and so on. As a result, there are a total of 
21,146 ways to partition the genotypes of only two loci into 
2 to 9 groups. If we have 3 loci, then we need to evaluate
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Figure 3. Algorithm of restricted partition method with an 
example of 2 nucleotide sequence variants. Two alleles are 
assumed for each nucleotide sequence variant, hence there are 3 
genotypes for each variant and 9 combined genotypes for 2 
variants. Each cell indicates the combined genotype. Every round 
the two groups with the smallest difference are combined into a 
new group until all the pairwise groups are significant. The two 
figures in parenthesis indicate the row and column numbers in a 
cell, and the cells presented in the right side are included in the 
pair of groups with the smallest difference.

63,438 with only 2-locus model and more than 1021 with 
additional 3-locus model. This clearly demonstrates that 
even with 3 loci, evaluating genetic interaction effects with 
CPM requires too exhaustive computing.

A modified method called the restricted partition 
method (RPM) was developed to reduce the exhaustive 
computing time for searching the best among all the 
possible genotypic partitions in the CPM. The RPM was 
designed also to find partitions of multilocus genotypes that 
explained a significant proportion of the phenotypic 
variation, but it restricted its search to avoid evaluation of 
partitions that would not explain much of the variation 
(Culverhouse et al., 2004). The best partition in this method 
was determined by iteratively comparing genotype groups 
by a multiple test and combining the pair with the smallest 
difference into a new group (Figure 3). All pair-wise 
significant differences of the groups were brought to a halt 
of the iteration in RPM. However, the RPM has some 
undesirable features produced by grouping genotypes 
although this algorithm dramatically reduces the 
computational burden from CPM. Iterations of grouping 
can produce a merged group in which genotypes with a 

significant difference in the initial stage are placed. The 
31% of simulated data showed at least one merged group 
that included significantly different genotypes (Lee and 
Park, 2007). Another undesirable feature of RPM is the 
other way around. Two genotypes initially without 
statistical significance can be split into two different groups. 
The study of Lee and Park (2007) revealed that 32% of 
simulated data was classified as the undesirable cases. 
Furthermore, they also showed this undesirable pattern in 
the real clinical data of obesity. The two genotypes 
(CCArgArg and CCTrpArg) of ^-adrenergic receptor gene 
(ADRB2) and Ps-adrenergic receptor gene (ADRB3) were 
separated into the risk and protective genotype groups 
(p<0.05) in spite of their corresponding initial phenotypic 
means (p>0.05). Such false positives or false negatives are 
more likely to be increased without a plausible biological 
explanation of grouping when applying the partitioning­
based estimation of genetic interaction effects.

A BAYESIAN METHOD USING 
GIBBS SAMP니NG

Unclear biological explanation on grouping multi-locus 
genotypes in CPM or RPM led to skepticism about the 
plausibility of the grouping-based algorithm, which guided 
back to a parametric method for explaining genetic 
interaction effects. More recently, a Bayesian approach was 
introduced to estimating genetic interaction parameters (Lee 
and Park, 2007), which was originated from the animal 
breeding context of Bayesian inference (Lee, 2000). In this 
method, inferences about unknown genetic interaction 
effects are based on their marginal posterior distribution in a 
Bayesian framework. The marginalization of the joint 
posterior distribution is attained through Gibbs sampling 
that is a numerical integration method based on a Markov 
chain Monte Carlo (Tanner, 1993).

They first derived a general formula for the joint 
posterior distribution of all parameters using the Bayes 
theorem. Inverse Gamma distributions were assumed for the 
priors of variance components for both genetic interaction 
effects and residuals because the use of flat priors for 
variance components might lead to inferences based on 
theoretically nonexistent posterior distributions (Hobert and 
Casella, 1996). Full conditional posterior distribution was 
subsequently derived by obtaining the posterior distribution 
of each parameter given the data and all other parameters. 
The full conditional distribution for a scalar genetic 
interaction effect is expressed as the following Normal 
distribution:

)
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The gj is the jth genetic interaction effect, t is a non- 
genetic fixed effect, y^ is a phenotypic value, N indicates 
Normal distribution, bg2 is genetic interaction variance, and 
＜爲2 is residual variance. The full conditional distribution of 
the corresponding genetic interaction variance component is 
as an Inverse Gamma distribution:

에&,-, 翫g ~ ig m+%,—121
d gj +— 

L 2 j 爲」 
.

The IG indicates Inverse Gamma distribution, ag is the 
shape parameter for genetic interaction variance component, 
and Yg is the scale parameter for genetic interaction variance 
component.

For Gibbs sampling, an intensive iteration is required to 
generate samples using the consecutively updated full 
conditional distribution of the parameters. The initially 
generated samples are discarded until their convergence is 
determined, and then samples are selected at a regular 
interval to reduce a correlation between the consecutive 
samples. The posterior mean of the genetic interaction 
effects is recommended to be estimated based on the 
optimum Bayes decision rule under quadratic loss.

This Bayesian method using Gibbs sampling can be 
structured more in details with some specific analytical 
models. An example was presented in the previous study of 
Lee and Park (2007) where two-locus interaction model was 
applied to simulated data with a variety of designs. They 
first named the method mixed model with Gibbs sampling 
(MMGS), but this approach may not require to be derived 
in a mixed model framework. Later, it was called Bayesian 
approach using Gibbs sampling (BAGS). The BAGS 
showed a smaller prediction error for their simulated data 
than the grouping-based method, RPM. The larger 
prediction error produced by RPM might be mainly 
explained by losing information in grouping genotypes. 
This simulation study suggested that BAGS might be 
superior in estimating genetic interaction effects to such 
nonparametric partitioning approach. Furthermore, they 
discussed lack of biological explanation for the grouping in 
terms of information loss produced by merging two 
different genotypes into one group. Thus the grouping­
based methods should be used with caution in that the 
information loss due to grouping has negligible effect, and 
justifiable biological explanation for the grouping is 
available. Otherwise, inferences on genetic interactions 
using RPM would not help determine whether their results 
would have viable implication to biological genetic 
interaction.

One of the major concerns for dealing with genetic 

interaction effects is statistical power and corresponding 
sample size. A simulation study showed that BAGS 
considerably increased powers when interaction effects 
were tested with 2 loci comparing to the RPM (Lee and 
Park, 2007). Such inferior characteristic of RPM was 
caused mainly by grouping genotypes in the algorithm. 
Addition of loci would even make a larger difference in the 
statistical power because increased number of genotypes 
facilitates grouping.

For users of BAGS, Lee and Kim (2008) provided 
practical guidelines for determining an optimal sample size 
with a given statistical power and for calculating statistical 
power with a given sample size. They suggested a simple 
practical usage of the estimates using four scenarios. The 
two scenarios would be utilized with a known sample size, 
and the others with an unknown sample size. When the 
sample size is known, statistical power estimates can be 
obtained across heritability for 2-, 3-, and 4-locus balanced 
and unbalanced designs. If we further know the heritability, 
then specific values for the power can be provided. When 
the sample size is unknown or flexible, we can get an 
optimal sample size across heritability with a given 
statistical power. If heritability is further known, then a 
specific value of sample size can be provided.

We assume to apply the method to a genomewide 
association study with one million sequence variants and to 
find an optimal sample size with the power of at least 0.8 in 
an unbalanced data in order to find interaction effects 
among 4 loci. Note that we use the term interaction instead 
of epistasis because interaction among the sequence 
variants in one gene can be also easily explained with a 
strong linkage. Optimal sample sizes suggested by Lee and 
Kim (2008) were 810, 1,620, and 4,050, respectively, with 
heritabilities of 0.5, 0.33, and 0.28.

CONCLUDING REMARKS

Now, we are confronting dramatically increasing 
markers resulted from animal genome projects, and such 
numerous data on genetic markers should be utilized to 
understand genetic architecture of their economic traits. 
Currently, genetic association studies for major livestock 
have been restricted to candidate gene analysis, and the 
association resulted form candidate gene studies were at 
most vague or contradictory in cattle (Kim et al., 2005; 
Cheong et al., 2008; Dario et al., 2008), swine (Li et al., 
2007; Chen et al., 2008; Omelka et al., 2008), and chickens 
(Wang et al., 2006; Wang et al., 2007; Zhang et al., 2008). 
Recently, a genomewide association analysis was reported 
for cattle (Charlier et al., 2008). In the near future, the 
candidate gene association study would have a dramatical 
shift to the genomewide association study. Consequently, 
development of appropriate and efficient methods to assess 
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genetic interactions would be an urgent task to achieve 
essential understanding of their genetic architecture. 
Ultimately, investigations at a molecular level would offer 
an answer to mounting questions on true biological genetic 
interaction.
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