• 제목/요약/키워드: Markov chain Monte Carlo method

검색결과 149건 처리시간 0.034초

t-링크를 갖는 마코프 이항 회귀 모형을 이용한 인도네시아 어린이 종단 자료에 대한 베이지안 분석 (Bayesian inference of longitudinal Markov binary regression models with t-link function)

  • 심보현;정윤식
    • 응용통계연구
    • /
    • 제33권1호
    • /
    • pp.47-59
    • /
    • 2020
  • 본 논문에서는 마코프 이항 회귀 모형의 시차가 알려져 있거나 그렇지 않은 경우일 때, t-링크 함수를 갖는 종단적 마코프 이항 회귀 모형을 제시한다. 일반적으로, 이항 회귀 모형에서는 로직 모형이나 프로빗 모형이 주로 사용된다. t-링크 함수는 t 분포가 자유도가 커질수록 정규분포로 근사하기 때문에 프로빗 모형을 대신 더 많은 유연성을 위해 사용될 수 있다. 게다가 마코프 회귀모형은 종단 자료에 대해 사용될 수 있다. 우리는 마코프 회귀 모형의 시차를 결정하기 위해 베이지안 방법을 제시하고자 한다. 특히, 각 모델의 차수에 대해 알고 있는 경우에는 DIC를 기준으로 모델 비교를 실시하였다. 모델의 차수에 대해 모르는 경우에는 가능한 모델들의 사후 확률을 이용하였다. 복잡한 베이지안 계산을 해결하기 위하여 Albert와 Chib (1993), Kuo와 Mallick (1998)과 Erkanli 등 (2001)의 방법을 이용하여 모델을 재설정하였다. 제안하는 방법은 시뮬레이션 데이터와 Somer 등 (1984)에 의해 조사된 인도네시아 어린이 종단 데이터에 적용했다. 마코프 이항 회귀모형의 순서에 대해서 아는 경우와 모르는 경우를 각각 가정하여 최적의 모델을 알아보기 위해 MCMC 방법을 사용하였다. 또한, 매트로폴리스 해스팅 알고리즘의 수렴성을 점검하기 위해 Gelman과 Rubin의 진단을 이용했다.

강화 학습을 통한 자동 반주 생성 (Automatic Generation of Music Accompaniment Using Reinforcement Learning)

  • 김나리;권지용;유민준;이인권
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2008년도 학술대회 1부
    • /
    • pp.739-743
    • /
    • 2008
  • 본 연구에서는 사용자가 입력한 멜로디에 따른 반주 음악을 자동으로 생성하는 방법을 제시한다. 시작되는 코드는 사용자의 멜로디에 의해서 생성이 되며, 그 다음 코드들은 코드들간의 전이확률이 정의되어있는 마르코프 체인(markov chain)의 확률 테이블을 이용하여 연속적으로 생성된다. 확률 테이블은 기존 음악의 샘플 데이터를 강화학습(reinforcement learning)을 이용하여 학습된다. 또한 실시간으로 재생되는 반주 코드는 매 상태 마다 주어지는 보상 값을 통해 더 나은 행동을 취할 수 있도록 학습해 나간다. 멜로디와 각 코드들간의 유사성은 피치 클래스 히스토그램을 이용하여 계산된다. 본 기술을 사용하여 주어진 사용자 입력에 조화로운 반주 코드의 자동 생성이 가능하다.

  • PDF

Bayesian estimation for the exponential distribution based on generalized multiply Type-II hybrid censoring

  • Jeon, Young Eun;Kang, Suk-Bok
    • Communications for Statistical Applications and Methods
    • /
    • 제27권4호
    • /
    • pp.413-430
    • /
    • 2020
  • The multiply Type-II hybrid censoring scheme is disadvantaged by an experiment time that is too long. To overcome this limitation, we propose a generalized multiply Type-II hybrid censoring scheme. Some estimators of the scale parameter of the exponential distribution are derived under a generalized multiply Type-II hybrid censoring scheme. First, the maximum likelihood estimator of the scale parameter of the exponential distribution is obtained under the proposed censoring scheme. Second, we obtain the Bayes estimators under different loss functions with a noninformative prior and an informative prior. We approximate the Bayes estimators by Lindleys approximation and the Tierney-Kadane method since the posterior distributions obtained by the two priors are complicated. In addition, the Bayes estimators are obtained by using the Markov Chain Monte Carlo samples. Finally, all proposed estimators are compared in the sense of the mean squared error through the Monte Carlo simulation and applied to real data.

Bayesian Inference of the Stochastic Gompertz Growth Model for Tumor Growth

  • Paek, Jayeong;Choi, Ilsu
    • Communications for Statistical Applications and Methods
    • /
    • 제21권6호
    • /
    • pp.521-528
    • /
    • 2014
  • A stochastic Gompertz diffusion model for tumor growth is a topic of active interest as cancer is a leading cause of death in Korea. The direct maximum likelihood estimation of stochastic differential equations would be possible based on the continuous path likelihood on condition that a continuous sample path of the process is recorded over the interval. This likelihood is useful in providing a basis for the so-called continuous record or infill likelihood function and infill asymptotic. In practice, we do not have fully continuous data except a few special cases. As a result, the exact ML method is not applicable. In this paper we proposed a method of parameter estimation of stochastic Gompertz differential equation via Markov chain Monte Carlo methods that is applicable for several data structures. We compared a Markov transition data structure with a data structure that have an initial point.

종이 헬리콥터 낙하해석모델의 통계적 교정 및 검증 (Statistical Calibration and Validation of Mathematical Model to Predict Motion of Paper Helicopter)

  • 김길영;유성범;김동영;김동성;최주호
    • 대한기계학회논문집A
    • /
    • 제39권8호
    • /
    • pp.751-758
    • /
    • 2015
  • 수학적 해석모델은 물리적 현상을 파악하고 실험비용을 절감하는데 활발하게 사용되지만 편의를 위한 단순화 또는 파라미터가 가지고 있는 불확실성에 의해 해석모델에 의한 예측결과는 실제현상과 차이가 발생한다. 본 연구에서는 이러한 문제에 대해 통계적 기법을 이용하여 해석모델의 불확실성을 반영한 교정 및 검증 방법을 종이 헬리콥터를 통해 제시한다. 먼저, 같은 제원의 세 가지 종이 헬리콥터로 실시한 실험 데이터를 각 그룹으로 형성하여 두 가지 낙하해석모델에서 미지의 입력 파라미터인 항력계수를 교정하는데 사용했다. 그리고 확률분포로 예측된 낙하시간을 실험 데이터 분포와 비교하여 해석 모델을 검증하였다. 이 때, Markov Chain Monte Carlo 기법을 활용하여 항력계수의 불확실성을 정량화하였다. 또한 종이 헬리콥터의 그룹별 데이터에 대해 분산분석(Analysis of Variance)를 이용하여 제작오차와 실험오차의 관계를 비교하였고, 각 그룹이 모두 동일한 대상으로 간주해도 됨을 증명하였다.

Hierarchical Bayes Analysis of Longitudinal Poisson Count Data

  • 김달호;신임희;최인순
    • Journal of the Korean Data and Information Science Society
    • /
    • 제13권2호
    • /
    • pp.227-234
    • /
    • 2002
  • In this paper, we consider hierarchical Bayes generalized linear models for the analysis of longitudinal count data. Specifically we introduce the hierarchical Bayes random effects models. We discuss implementation of the Bayes procedures via Markov chain Monte Carlo (MCMC) integration techniques. The hierarchical Baye method is illustrated with a real dataset and is compared with other statistical methods.

  • PDF

Bayesian Analysis for Random Effects Binomial Regression

  • Kim, Dal-Ho;Kim, Eun-Young
    • Communications for Statistical Applications and Methods
    • /
    • 제7권3호
    • /
    • pp.817-827
    • /
    • 2000
  • In this paper, we investigate the Bayesian approach to random effect binomial regression models with improper prior due to the absence of information on parameter. We also propose a method of estimating the posterior moments and prediction and discuss some general methods for studying model assessment. The methodology is illustrated with Crowder's Seeds Data. Markov Chain Monte Carlo techniques are used to overcome the computational difficulties.

  • PDF

Bayesian Prediction of Exponentiated Weibull Distribution based on Progressive Type II Censoring

  • Jung, Jinhyouk;Chung, Younshik
    • Communications for Statistical Applications and Methods
    • /
    • 제20권6호
    • /
    • pp.427-438
    • /
    • 2013
  • Based on progressive Type II censored sampling which is an important method to obtain failure data in a lifetime study, we suggest a very general form of Bayesian prediction bounds from two parameters exponentiated Weibull distribution using the proper general prior density. For this, Markov chain Monte Carlo approach is considered and we also provide a simulation study.

Bayesian Variable Selection in the Proportional Hazard Model

  • Lee, Kyeong-Eun
    • Journal of the Korean Data and Information Science Society
    • /
    • 제15권3호
    • /
    • pp.605-616
    • /
    • 2004
  • In this paper we consider the proportional hazard models for survival analysis in the microarray data. For a given vector of response values and gene expressions (covariates), we address the issue of how to reduce the dimension by selecting the significant genes. In our approach, rather than fixing the number of selected genes, we will assign a prior distribution to this number. To implement our methodology, we use a Markov Chain Monte Carlo (MCMC) method.

  • PDF

BAYESIAN AND CLASSICAL INFERENCE FOR TOPP-LEONE INVERSE WEIBULL DISTRIBUTION BASED ON TYPE-II CENSORED DATA

  • ZAHRA SHOKOOH GHAZANI
    • Journal of applied mathematics & informatics
    • /
    • 제42권4호
    • /
    • pp.819-829
    • /
    • 2024
  • This paper delves into an examination of both non-Bayesian and Bayesian estimation techniques for determining the Topp-leone inverse Weibull distribution parameters based on progressive Type-II censoring. The first approach employs expectation maximization (EM) algorithms to derive maximum likelihood estimates for these variables. Subsequently, Bayesian estimators are obtained by utilizing symmetric and asymmetric loss functions such as Squared error and Linex loss functions. The Markov chain Monte Carlo method is invoked to obtain these Bayesian estimates, solidifying their reliability in this framework.