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Abstract
Based on progressive Type II censored sampling which is an important method to obtain failure data in a

lifetime study, we suggest a very general form of Bayesian prediction bounds from two parameters exponentiated
Weibull distribution using the proper general prior density. For this, Markov chain Monte Carlo approach is
considered and we also provide a simulation study.

Keywords: Bayesian prediction bounds, exponentiated Weibull distribution, Gibbs sampling, Met-
ropolis-Hastings algorithm, progressive Type II censoring.

1. Introduction

Two-parameter Exponentiated Weibull(EW) distribution introduced by Mudholkar and Srivastava
(1993) is a more realistic model for an analysis of a lifetime test than a model with monotone failure
rates. Lifetime data often have bathtub shape or upside-down bathtub shape failure rates. EW dis-
tribution often has non-monotone failure rates; therefore, it is applied as a failure model in areas of
reliability, quality control, duration and failure time modeling that make it useful to fit many types of
data.

Progressive Type II censored sampling is an important method to obtain failure data in lifetime
studies. Live units removed early on can be readily used in other tests that save costs to the experi-
menter; consequently, a compromise can be achieved between time consumption and the observation
of some extreme values.

In practical scenarios, the lifetimes of test units may not be recordable exactly because the test
terminates after a predetermined number of failures occur in order to save time or costs. Some test
units may need to be removed (for various reasons) at different stages in the study; consequently,
would lead to progressive censoring. Some early works can be found in Viveros and Balakrishnan
(1994) and Balakrishnan and Sandhu (1995). Nassar and Eissa (2004) deal with complete and Type II
censoring samples and develop the estimation of the shape parameters and reliability function of the
exponentiated Weibull model under Type II Progressive censoring samples.

Under this censoring scheme, Kim et al. (2011) considered the Bayesian estimation of the param-
eters and the reliability function of the EW distribution with progressive Type II censored sampling.
They obtained Bayes estimators using symmetric and asymmetric loss functions via squared error loss
and Linex loss functions; in addition, they used an approximation based on the Lindley (1980) method
to obtain Bayes estimates under the loss functions.
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The main issue of this study is the prediction problems of the lifetime models. Problems arise
when machine tools need to be replaced or industrial processes replaced in the field of engineering
and the provision of warranty limits for the future performance of a specified number of systems in
the field of business. This article is concerned with construction of Bayesian prediction bounds for a
future progressive order statistic based on an informative Type II progressive censoring right censored
sample from the exponentiated Weibull distribution. In Section 2, we provide a brief explanation
for the progressive censoring and EW model. We then suggest Bayesian prediction bounds as a
general form for two parameters EW distribution in Section 3. In Section 4, we present the results of
simulation used in MCMC methods. The concluding remarks are in Section 5.

2. Progressive Type II Censoring and EW Mpdel

Suppose that n independent items are put on a life test. They consist of m ordered observed failure
times denoted by t1, . . . , tm and progressive censoring scheme (R1, . . . ,Rm) which are previously fixed.
It is clear that n = m + R1 + R2 + · · · + Rm.

Note that the familiar complete and Type II right-censored samples are special cases of this
scheme. If R1 = R2 = · · · = Rm−1 = 0 and Rm = n − m, this sampling scheme reduces to the
conventional Type II censoring. In addition, if R1 = R2 = · · · = Rm = 0, then the progressive Type II
censoring scheme reduces to the complete sampling case.

Balakrishnan and Sandhu (1995) showed the joint probability density function is provided as:
when the failure times of n items originally on the test come from a continuous population with
cumulative density function F(t) (cdf) and probability density function f (t) (pdf),

P(t|θ) = A
m∏

i=1

f (ti)[1 − F(ti)]Ri , (2.1)

where θ is the parameter vector and

A = n(n − R1 − 1)(n − R1 − R2 − 2) · · · (n − R1 − R2 − · · · − Rm−1− m + 1).

Now we suppose that T is a positive random variable having cdf F(t) such as:

F(t) ≡ F(t|θ) = e−λθ(t), t > 0, (2.2)

where θ is the parameter (could be a vector) that indicates the population distribution such that θ ∈
Θ, Θ is the parameter space, and λθ(t) ≡ λ(t; θ). Notice that λθ(t) is assumed to be a nonnegative
continuous differentiable function of t such that λθ(t) → ∞ as t → 0+ and λθ(t) → 0 as t → ∞. Its
corresponding pdf f (t) and reliability function are given respectively as:

f (t) ≡ f (t|θ) = −λ′θ(t) e−λθ(t), t > 0, (2.3)

and

S (t) ≡ S (t|θ) = 1 − F(t) = e−λθ(t), (2.4)

where the prime in (2.3) indicates the first derivatives for the parameter.
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If we assume that the sample is a progressive Type II censored sample, equation in (2.1) can be
rewritten as the likelihood function such as:

L(θ; t) ∝
m∏

i=1

f (ti)[S (ti)]Ri . (2.5)

Substituting (2.3) and (2.4) in (2.5), the likelihood function based on progressive Type II censored
sample can be expressed as:

L(θ; t) ∝
 m∏

i=1

(−λ′θ(ti)) e−
∑m

i=1[λθ(ti)−Ri ln(1−e−λθ (ti))]. (2.6)

To set up a Bayesian method, we consider the proper general (conjugate) prior density suggested
by Al-Hussaini (1999). The form of which is given as:

π(θ; z) ∝ C(θ; z)e−D(θ;z), θ ∈ Θ, z ∈ Ω, (2.7)

where z, C(θ; z), D(θ; z) andΩ are vector of prior parameters, parametric function, exponential power-
term and the hyper-parameter space, respectively. Then the posterior density function can be given
by:

π(θ|t) ∝
 m∏

i=1

(−λ′θ(ti))C(θ; z) × e−
∑m

i=1[λθ(ti)−Ri ln(1−e−λθ (ti ))]−D(θ;z). (2.8)

Mudholkar and Srivastava (1993) introduced Two-parameter Exponentiated Weibull(EW) distri-
bution with α and β. Cumulative density function and probability density function are given respec-
tively by

F(t) =
(
1 − e−tα

)β
, t > 0. (2.9)

and

f (t) = αβtα−1e−tα
(
1 − e−tα

)β−1
, t > 0, α > 0, β > 0. (2.10)

Now we consider a bivariate prior density suggested by Nassar and Eissa (2004). They suggested
a bivariate prior density which is of form as:

π(α, β) = π2(β|α)π1(α), (2.11)

where

π1(α) =
1
b

e−
α
b , (2.12)

and

π2(β | α) =
α−ν

Γ(ν)
βν−1 e−

β
α , β > 0. (2.13)
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Here, b and ν are assumed to be known. Therefore, the bivariate prior density function of α and β
can be written as:

π(α, β) = (bΓ(ν))−1α−νβν−1e−
α2+bβ

bα , α > 0, β > 0. (2.14)

Now the joint posterior density function of α and β given t is proportional to

π(α, β|t) ∝ αm−νβm+ν−1e−
(
α
b +φ1−φ2+

β
α

)
, (2.15)

where φ1 and φ2 are:

φ1(α) =
m∑

i=1

[
tαi − (α − 1) ln ti + ln ui

]
,

φ2(α, β) =
m∑

i=1

[
β ln ui + Ri ln

(
1 − uβi

)]
, (2.16)

and ui = (1 − e−tαi ).
If we want to express general form such like (2.8) with (2.15), λ(t;α, β),C(α, β; z), D(α, β; z) and

z = (ν, b) are respectively:

λ(t;α, β) = −β ln
(
1 − e−tα

)
, (2.17)

C(α, β; ν) = α−νβν−1,

and

D(α, β; b) =
α

b
+
β

α
. (2.18)

3. Bayesian Predictive Bounds

The general problem of statistical prediction may be described as that of inferring the value of un-
known observable which belongs to a future sample from current available information, known as the
informative sample.

In Bayesian prediction problems, we generally try to predict a random variable Y ∼ g(y|θ) based
on the observation of T ∼ f (t|θ). We further assume that T and Y are independent and g is a proper
density. If T and Y are not independent, the necessary change in the following would be to replace
g(y|θ) by g(y|θ, t). The idea of Bayesian predictive inference is that, since π(θ|t) is the believed (pos-
terior) distribution of θ, then g(y|θ)π(θ|t) is the joint distribution of y and θ given t, and integrating out
over θ will provide the assumed distribution of y given t. Therefore, the predictive density of Y given
vector t is defined by:

f (y|t) =
∫
Θ

g(y|θ)π(θ|t)dθ. (3.1)

Now, a 100τ∗% Bayesian prediction bounds for Y ≡ Ys is such that P[Ls(t) ≤ Ys ≤ Us(t)] = τ∗,
where Ls(t) and Us(t) are the lower and upper Bayesian predictive bounds of the sth order statistic
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Ys, s = 1, 2, . . . ,N, which satisfy the following two equations:

Pr(Ys ≥ Ls(t)|t) =
1 + τ∗

2
,

Pr(Ys ≥ Us(t)|t) =
1 − τ∗

2
. (3.2)

By using (3.1) and (3.2), we can find its predictive bounds.
This study presents the general forms of g(ys|θ), f (ys|t) and the probability when the future ob-

servation is larger than for any ϵ, respectively. To do this, we assume that T1, . . . ,Tm as informative
sample and R1,R2, . . . ,Rm as a censoring scheme from a random sample of size n and Y1, . . . ,YN

as a future ordered sample of size N. If it is assumed that two samples are independent and each
corresponding sample is obtained from a population with cdf (2.2), then the density function of Ys,
s = 1, . . . ,N is given by

g(ys|θ) = s
(
N
s

) N−s∑
j=0

(−1) j
(
N − s

j

) (−λ′θ(ys)
)

e−(s+ j)λθ(ys). (3.3)

The above expression can be obtained by using the formula of the sth general order statistic, by
substituting (2.2) and (2.3), and by using a binomial theorem. We calculate the predictive density
function f (ys|t) from the posterior density function (2.8) and density function (3.3). It follows that:

f (ys|t) = s
(
N
s

) N−s∑
j=0

(−1) j
(
N − s

j

)
ξ j(ys), (3.4)

where

ξ j(ys) =
∫
Θ

η(θ)e−Ψ(θ)dθ,

η(θ) =
(−λ′θ(ys)

)  m∏
i=1

(−λ′θ(ti))C(θ; z),

and

Ψ(θ) =
m∑

i=1

[
λθ(ti) + Ri ln

(
1 − e−λθ(ti)

)]
+ D (θ; z) + (s + j)λθ(ys).

Now, we calculate the predictive probability for an arbitrary ϵ > 0. If the predictive density function
f (ys|t) is represented by (3.4) then the predictive probability of the sth future observation greater than
for the arbitrary ϵ > 0 can be calculated as

P[Ys > ϵ |t] =
∫ ∞

ϵ

f (ys|t)dys

= s
(
N
s

) N−s∑
j=0

w jG j(ϵ), (3.5)
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where

w j =
(−1) j

(
N−s

j

)
s + j

,

G j(ϵ) =
∫
Θ

[
1 − e−(s+ j)λθ(ϵ)

]
π(θ|t)dθ. (3.6)

To show (3.5) using the predictive function in (3.4), we perform an integration from ϵ to ∞. We then
obtain the following form:

P[Ys > ϵ |t] =
∫ ∞

ϵ

∫
Θ

g(ys|θ)π(θ|t)dθdys

= s
(
N
s

) N−s∑
j=0

(−1) j
(
N − s

j

)
×

∫
Θ

π(θ|t)
(∫ ∞

ϵ

(−λ′θ(ys))e−(s+ j)λθ(ys)dys

)
dθ.

Clearly as ys → ∞ then λθ(ys)→ 0 and as ys → ϵ then λθ(ys)→ λ(ϵ), and thus

∫ ∞

ϵ

(
−λ′θ(ys)

)
e−( j+s)λθ(ys)dys =

[
1 − e−( j+s)λθ(ϵ)

]
( j + s)

.

Therefore it can be rewritten that

P[Ys > ϵ |t] = s
(
N
s

) N−s∑
j=0

(−1) j
(

N−s
j

)
( j + s)

∫
Θ

[
1 − e−( j+s)λθ(ϵ)

]
π(θ|t)dθ.

Notice that λθ(ys) would be changed to λθ(ϵ) in (3.6). It does not lead to a simple form, but requires
numerical integration, programming and computer time. Thus a simple approximation via an asymp-
totic expansion of non-tractable integral is considered and shown in the last part in this section.

A bivariate prior density suggested by Nassar and Eissa (2004) was adopted for a special case
of the proper general prior density suggested by Al-Hussaini (1999). The Bayes predictive density
function of Y ≡ Ys of (3.4) by applying the full conditional posterior density function of α and β of
(2.15) to this. We then can obtain the following form.

f (ys|t) =
∫ ∞

0
s
(
N
s

) N−s∑
j=0

w j

[
αyα−1

s e−yαs

1 − e−yαs

]
αm−νe[− α

b −φ1(α)]

×
∫ ∞

0
βm+νe

[
φ2(α,β)− β

α+β(s+ j) ln
(
1−e−yαs

)]
dβdα. (3.7)

Finally the Bayesian prediction bounds for Y ≡ Ys are obtained by integrating out ys. In order to get
P(Ys ≥ ϵ|t) for some given value of ϵ, we adopted Markov chain Monte Carlo(MCMC) methods such
as Gibbs sampler (Gelfand and Smith, 1990) and Metropolis-Hastings algorithm (Metropolis et al,
1953; Hastings, 1970).

For using MCMC method, we need to compute a full conditional posterior density such as π(α|β, t)
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and π(β|α, t).

π(α| β, t) ∝ αm−ν exp
[
−α

b
− φ1(α) + φ2(α, β) − β

α

]
∝ Gam

m − ν + 1,
(

1
b

)−1 (3.8)

× exp
(
− β
α
− φ1(α) + φ2(α, β)

)
,

where φ1 and φ2 are given by (2.16), and Gam( · , ·) indicates a gamma density function used for the
deriving function. In addition, the conditional posterior density of π(β|α, t) is:

π(β| α, t) ∝ βm+ν−1 exp
[
φ2(α, β) − β

α

]
∝ Gam

m + ν,
 1
α
−

m∑
i=1

ln ui

−1 (3.9)

× exp

 m∑
i=1

Ri ln
(
1 − uβi

) ,
where φ2 and ui are given by (2.16).

Then given α(k) and β(k) as the kth iterate state, draw candidate α(∗) from the deriving function
Gam(m − ν + 1, (1/b)−1) and draw candidate β(∗) from Gam(m + ν, (1/α −∑m

i=1 ln ui)−1), respectively,
and accept α(∗) as (k + 1)th iterate state of α with acceptance probability

ψ1 = min

exp
(
− β
α(∗) − ~(α(∗))

)
exp

(
− β
α(k) − ~(α(k))

) , 1 , (3.10)

where

~(α∗) =
m∑

i=1

{
tα

(∗)

i +
(
α(∗) − 1

)
ln ti + ln u(1−β)

i − Ri ln
(
1 − uβi

)}
,

and

~(α(k)) =
m∑

i=1

{
tα

(k)

i +
(
α(k) − 1

)
ln ti + ln u(1−β)

i − Ri ln
(
1 − uβi

)}
.

By same method, β(∗) as (k + 1)th iterate state of β with acceptance probability

ψ2 = min


exp

(∑m
i=1 Ri ln

(
1 − uβ

(∗)

i

))
exp

(∑m
i=1 Ri ln

(
1 − uβ

(k)

i

)) , 1
 . (3.11)
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MLE will be used as initial value in this situation. Using the α and β obtained by (3.10) and (3.11),
the predictive probability of ys to be greater than for any ϵ is rewritten as:

Pr(Ys ≥ ϵ |t) =
∫ ∞

ϵ

f (ys|t)dys

=

∫ ∞

ϵ

[∫ ∞

0

∫ ∞

0
g(ys|α, β)π(α, β|t)dαdβ

]
dys

≃
∫ ∞

ϵ

1
K

K∑
k=1

g
(
ys|α(k), β(k)

)
dys (3.12)

≃ 1
K

K∑
k=1

s
(
N
s

) N−s∑
j=0

w j

[
1 −

(
1 − e−ϵ

α(k)
)β(k)(s+ j)

]
,

where w j is given by (3.6), α(k) and β(k) are outputs obtained by after k Gibbs iteration.
We present our simulation results for 4 kinds of different censoring scheme in the next section.

4. Simulation Study

For our simulation study, we generated a progressive Type II censored sample from the EW distri-
bution using the algorithm of Balakrishnan and Sandhu (1995). For a given value of b, ν and the
progressive censoring scheme R1,R2, . . . ,Rm, we generated α and β by (2.12) and (2.13), respectively.
Next, we generated Z1,Z2, . . . , Zm from U(0, 1) and Qi = Z1/(i+Rm+Rm−1+···+Rm−i+1)

i , for i = 1, 2, . . . ,m.
We also made Ui = 1 − QmQm−1 · · ·Qm−i+1 which would be a progressive Type II censored sample of
size m from U(0, 1). Finally, we obtained a censored sample size m from the EW distribution using
the inverse cdf,

Ti =

[
− ln

(
1 − U

1
β

i

)] 1
α

, i = 1, 2, . . . ,m.

They are the required progressive Type II censored sample of size m from EW distribution.
By the above simulation algorithm, we obtained data T (i), under the progressive Type II censor-
ing schemes of four kinds which are R1 = (1, 0, 1, 2, 0, 0, 3, 0, 1, 2), R2 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 10),
R3 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) and R4 = (2, 2, 2, 2, 2, 0, 0, 0, 0, 0).

Our simulation setting is: First, we generate sample size of n = 20 and a simulated progressively
Type-II censored of size m = 10 from EW(α, β) density given by (2.10). For using bivariate prior
distribution such as (2.14), we set b = 4 to generate α in (2.12) and set ν = 3 with a generated α to
generate β in (2.13). Once we have to decide the value of τ∗ in (3.2). In this paper, we set τ∗ = 0.95
since we want to know 95% predictive intervals then we know the probabilities that Ys is greater
than lower bound (Ls(t)) or upper bound (Us(t)) from (3.2) should be 0.975 and 0.025, respectively.
In fact, (3.2) and (3.12) are equivalent. Therefore, our target is to find the value of ϵ which is the
same of lower bound or upper bound. and the value of ϵ in (3.12) will be changed by 0.0001. These
processes are continued until achieving differences between lower bound (Ls(t)) and 0.975 or upper
bound (Us(t)) and 0.025 will be less than 0.00001.

We used (3.8) and (3.9) for Gibbs sampling. In addition, (3.10) and (3.11) are used to apply the
Metropolis algorithm.

Table 1 through Table 4 show the predictive intervals for Ys, s = 1, . . . , 10 for our four kinds of
censoring scheme such as R1,R2,R3 and R4. For a visual understanding of our results we provide
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Table 1: The 95% predictive intervals for Ys under R1
Ti Censoring time Ys Lower bound Upper bound
T1 0.9146 Y1 0.1001 1.0959
T2 1.0672 Y2 0.2407 1.1498
T3 1.0998 Y3 0.3675 1.2026
T4 1.2538 Y4 0.4845 1.2743
T5 1.2547 Y5 0.6057 1.3910
T6 1.3979 Y6 0.7304 1.5604
T7 1.4301 Y7 0.8611 1.7795
T8 1.5635 Y8 1.0025 2.0718
T9 1.6526 Y9 1.1190 2.5104
T10 1.7724 Y10 1.1704 3.3986

Table 2: The 95% predictive intervals for Ys under R2
Ti Censoring time Ys Lower bound Upper bound
T1 0.9076 Y1 0.0511 1.0910
T2 1.0521 Y2 0.1536 1.1434
T3 1.0831 Y3 0.2634 1.1961
T4 1.2206 Y4 0.3798 1.2699
T5 1.2213 Y5 0.5042 1.3939
T6 1.3278 Y6 0.6385 1.5726
T7 1.3513 Y7 0.7852 1.8082
T8 1.4082 Y8 0.9492 2.1338
T9 1.4420 Y9 1.1144 2.6433
T10 1.4773 Y10 1.1808 3.7236

Table 3: The 95% predictive intervals for Ys under R3
Ti Censoring time Ys Lower bound Upper bound
T1 0.9076 Y1 0.0935 1.0931
T2 1.0563 Y2 0.2302 1.1479
T3 1.0896 Y3 0.3562 1.2033
T4 1.2422 Y4 0.4786 1.2778
T5 1.2430 Y5 0.6013 1.3929
T6 1.3797 Y6 0.7273 1.5537
T7 1.4136 Y7 0.8596 1.7675
T8 1.5105 Y8 1.0028 2.0590
T9 1.5854 Y9 1.1190 2.5104
T10 1.7167 Y10 1.1775 3.4099

Figure 1 corresponding to Table 1 and Table 2 as well as Figure 2 corresponding to Table 3 and Table
4, respectively.

For the censoring scheme of R1 = (1, 0, 1, 2, 0, 0, 3, 0, 1, 2), we randomly removed Ri at each
censoring time point without any regulation. The censoring scheme of R2 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 10)
is a conventional Type II censoring (where we assigned all to the last of R10 at the last censoring
time point of t10) is just to compare the results of any other progressive Type II censoring schemes.
R3 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) was intended to check how the result varies when all of Ri has been
distributed equally. Finally, we considered circumstance such as R4 = (2, 2, 2, 2, 2, 0, 0, 0, 0, 0).

Table 1 and Table 3 show that the Bayesian predictive bounds are very similar to each other.
Even though we used different censoring scheme, the values of censoring time are also similar. The
conventional Type II censoring scheme of R2 show that the censoring time for T8 through T10 are very
close; however, the corresponding Bayesian predictive bounds are still similar to R1 and R2.

Table 4 show us that the bandwidths of predictive intervals of Ys are shorter and are different than
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Table 4: The 95% predictive intervals for Ys under R4
Ti Censoring time Ys Lower bound Upper bound
T1 0.9076 Y1 0.5273 1.1005
T2 1.0609 Y2 0.7010 1.1508
T3 1.0971 Y3 0.8099 1.2017
T4 1.2709 Y4 0.8917 1.2599
T5 1.2719 Y5 0.9655 1.3286
T6 1.4858 Y6 1.0262 1.4093
T7 1.5358 Y7 1.0711 1.5053
T8 1.6777 Y8 1.0978 1.6251
T9 1.7881 Y9 1.1190 1.7900
T10 1.9841 Y10 1.1435 2.0818
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Figure 1: Plots for Predictive intervals of Ys under R1 and R2 censoring scheme
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Figure 2: Plots for Predictive intervals of Ys under R3 and R4 censoring scheme

those of Table 1, Table 2, Table 3 and Table 4. In addition, the value of the predictive upper bounds
run parallel to the value of the informative samples. We provide Figure 1 and Figure 2 to support
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Table 5: 95% predictive intervals for Ys as varying the hyperparameters

Ys
b = 2 ν = 2 b = 6 ν = 6 b = 7 ν = 7 b = 8 ν = 8
Lower Upper Lower Upper Lower Upper Lower Upper

Y1 0.7122 1.2207 0.3153 1.3152 0.2203 1.3893 0.1602 1.4638
Y2 0.8759 1.2973 0.5663 1.5357 0.4675 1.6999 0.3972 1.8681
Y3 0.9714 1.3679 0.7559 1.7571 0.6767 2.0230 0.6196 2.3024
Y4 1.0420 1.4366 0.9134 2.0002 0.8630 2.3913 0.8294 2.8115
Y5 1.1001 1.5089 1.0467 2.2800 1.0301 2.8310 1.0247 3.4364
Y6 1.1501 1.5884 1.1587 2.6185 1.1767 3.3773 1.2048 4.2386
Y7 1.1961 1.6801 1.2543 3.0470 1.3082 4.0913 1.3708 5.3281
Y8 1.2413 1.7934 1.3416 3.6317 1.4336 5.1007 1.5347 6.9366
Y9 1.2896 1.9505 1.4329 4.5401 1.5682 6.7455 1.7154 9.7001
Y10 1.3522 2.2398 1.5529 6.4775 1.7488 10.5400 1.9638 16.5628
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Figure 3: Plots for 95% Predictive intervals of Ys under R1

a more comprehensive understanding. Real line (red line), dotted line (green line) and dashed line
(blue line) indicate the censoring time, upper bound and lower bound, respectively. We can find the
differences among censoring schemes clearly.

Table 5 and Figure 3 shows how to change the result as varying the choice for hyper parameters
of prior distribution. Under the censoring schemes of R1, this simulation study was executed.

Table 5 illustrates how we set up the value of hyper-parameter of prior distribution such as b and
ν as (2, 2), (6, 6), (7, 7), and (8, 8), respectively. As the value of hyper-parameter goes to high, the
bandwidths for the 95% predictive intervals are wider (see Figure 3).

5. Concluding Remarks

We show Bayesian prediction bounds for two parameters of Exponentiated Weibull distribution based
on progressive Type II censoring. We consider an EW model and the above censoring scheme in a
lifetime prediction problem in order to save application of data costs and time related to reliability and
quality control. To present a general form of Bayesian predictive bounds to be calculated by numerical
method, we first suggest a very general form for posterior density of EW model when using the
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proper general prior density and a simple approximation via an asymptotic expansion of non-tractable
integral. Section 4 shows the four simulated difference censoring schemes; in addition, this trend was
similar under censoring scheme R1,R2 and R3 except for R4. The bandwidth of prediction value for
the upper and lower bound was shorter than the other censoring schemes for the censoring scheme
of R4. To the best of our knowledge, this is the first study on a general form of Bayesian predictive
bounds in terms of an EW model with a progressive Type II censoring sample.
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