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Abstract
A stochastic Gompertz diffusion model for tumor growth is a topic of active interest as cancer is a leading

cause of death in Korea. The direct maximum likelihood estimation of stochastic differential equations would
be possible based on the continuous path likelihood on condition that a continuous sample path of the process
is recorded over the interval. This likelihood is useful in providing a basis for the so-called continuous record
or infill likelihood function and infill asymptotic. In practice, we do not have fully continuous data except a
few special cases. As a result, the exact ML method is not applicable. In this paper we proposed a method of
parameter estimation of stochastic Gompertz differential equation via Markov chain Monte Carlo methods that is
applicable for several data structures. We compared a Markov transition data structure with a data structure that
have an initial point.

Keywords: Stochastic diffusion. Gompertz growth model, tumor growth, Bayesian, Markov data
structure, sparse data structure.

1. Introduction

Mathematical modeling of tumor growth has developed into an important area of research since can-
cer is a prevalent disease in Korea. Biological, physical, and chemical behaviors of tumor growth can
be explained using many differential equation models. The Gompertz growth model is a particularly
popular model as it is simple and convenient to use. It has a large explanatory power representing real
phenomena because all tumors follow a standard growth pattern of fast growth in the beginning and
eventually reach a maximum size. Recently this model has been applied to tumor growth and many
good examples of this application are available (Benzekry et al., 2014; Bonate et al., 2013). How-
ever, the Gompertz growth model often exhibits discrepancies between clinical data and theoretical
predictions due to intense environmental fluctuations and varied diversities of patients. To consider
such environmental fluctuations and diversities of patients, tumor growth models adopt the stochastic
process (Lo, 2007; Nobile et al., 1985). The case of the Gompertz growth model deserves a special
mention because various expressions exists. Thus, there is no single deterministic model associated
with the Gompertz growth model (Gutièrrez-Jáimez et al., 2007).

If Xt is the volume of the tumor at time t, then the deterministic Gompertz growth model is defined
by the differential equation

dXt = me−βtXtdt, (1.1)
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where m is the relative growth rate and β is the rate of decay of m. The variety of different tumor
types is decided based on these parameters. Equation (1.1) has the solution in the form of a double
exponential function

Xt = X0e
m
β exp

(
−m
β

e−βt
)
, (1.2)

where X0 is the initial volume and X0em/β is the maximum volume of the tumor. There exists an in-
flection point corresponding to the maximum growth rate, for example, the quasistationary solution.
Further, discrepancies often exist between clinical data and theoretical predictions, due to intense en-
vironmental fluctuations and varied diversities of patients (Lo, 2010). Stochastic differential equations
often have properties that can be derived from the theory of ordinary differential equations.

If a continuous sample path of the process Xt were recorded over the interval [0,T ], direct max-
imum likelihood(ML) estimation of stochastic Gompertz differential equations would be possible
based on the continuous path likelihood. This likelihood is very useful to provide a basis for the con-
tinuous record or infill likelihood function and infill asymptotics. The main justification for the use of
the ML method lies in its desirable asymptotic properties, particularly its consistency and asymptotic
efficiency under conditions of correct specification. Subsequently, various ML methods have been
proposed. In practice, a continuous record is not available and ML estimators are infeasible (Phillips
and Yu, 2009). The most common numerical methods include certain difficulties for ML estimator,
such as the diversity for the Newton-Raphson method and its simulated annealing method and the
inaccuracy for iterated method (Gutièrrez-Jáimez et al., 2007). Generally, the likelihood functions of
stochastic models may contain many integrals, which often makes a standard classical analysis dif-
ficult or even unfeasible. For example, the estimation methods of parameters (like Newton-Raphson
method) require the most-widely used procedures to derive the maximum-likelihood estimate. In ad-
dition, there is a floating-point overflow problem in searching the parameter estimates of stochastic
diffusion model due to the exponential component (Alili et al., 2005; Linetsky, 2004; Lv and Pitch-
ford, 2007). The advantage of the Bayesian approach using Markov chain Monte Carlo(MCMC) is
that the researcher can replace the unobserved variables by simulated variables, relieving the burden
of evaluating the likelihood function unconditional to the unobserved variables to allow a focus on the
conditional likelihood function. In many cases, this makes Bayesian parameter estimation faster than
classical maximum likelihood estimation (Paap, 2002).

In this paper, we proposed the model employed by the MCMC, which have the characteristics
with a noticeable convergence for parameter estimation, that consider the application of several data
structures with a continuous data type as well as a sparse data type.

2. Stochastic Gompertz Model

Let us consider the usual form of the stochastic Gompertz differential equati ons, that is

dXt = me−βtXtdt + σXtdWt, (2.1)

where Wt denotes the standard Wiener process.
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Let F(t, Xt) = log(Xt). Then, Ito’s lemma gives

d
(
log (Xt)

)
=

1
Xt

dXt +
σ2X2

t

2

(
− 1

X2
t

)
dt

=
1
Xt

(
me−βtXtdt + σXtdWt

)
− σ

2

2
dt

=

(
me−βt − σ

2

2

)
dt + σdWt.

Subsequently, Xt |Xt−1 ∼ LN(( m
β

e−βt(e− 1)−σ2/2)+ log(Xt−1), σ2) and Xt |X0 ∼ LN(( m
β

(1− e−βt)−
σ2t/2 + log(X0), σ2t), where LN denotes the log-normal distribution. In data structure case given an
initial point, the probability density function of Yt = log (Xt/X0) is

hYt (yt) =
1

√
2πσ2t

exp


(
yt − m

β

(
1 − e−βt

)
+ σ2t

2

)2

2σ2t

 .
However, since Yt = log (Xt/X0), the probability density function of Xt given X0 = x0 is

fXt (xt |x0) =
1

xt
√

2πσ2t
exp


(
log

(
xt
x0

)
− m

β

(
1 − e−βt

)
+ σ2t

2

)2

2σ2t

 .
Therefore, after some algebra, that

E (Xt |X0) = X0 exp
(

m
β

(
1 − e−βt

))
, (2.2)

and

Var (Xt |X0) = X2
0

(
eσ

2t − 1
)

exp
(

2m
β

(
1 − e−βt

))
.

We derive the upper and lower bound of (1−α) ∗ 100% confidence interval of Xt at time t given X0 as

XtU = X0 exp
(

m
β

(
1 − e−βt

)
− σ

2t
2
+ Z α

2
σ2t

)
, (2.3)

XtL = X0 exp
(

m
β

(
1 − e−βt

)
− σ

2t
2
− Z α

2
σ2t

)
. (2.4)

In addition, we calculate a probability that Xt is greater than critical value c, i.e.

P (Xt > c|X0) = 1 − Φ

 log
(

c
X0

)
− m

β

(
1 − e−βt

)
σ2t

 , (2.5)

where Φ denotes the standard normal cumulative distribution function.
When Xt is observed continuously, a log-likelihood function for the continuous record (Xt)T

t=0 may
be obtained directly from the Radon Nikodym(RN) derivative of the relevant probability measures.
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The RN derivative produces the relevant probability density and can be regarded as measurement
change among the absolutely continuous probability measures, the calculation being facilitated by the
Girsanov theorem. With the availability of a continuous record, it follows that the exact log-likelihood
can be constructed via the Girsanov theorem (Karatzas, 1991)

l(m, β, σ) =
∫ T

0

(
me−βt − σ2

2

)
σ2 d log(Xt) −

1
2

∫ T

0

(
me−βt − σ2

2

)2

σ2 dt.

However, if a continuous record of (Xt)T
t=0 is not available, then ML estimators of the exact log-

likelihood are infeasible (Phillips and Yu, 2009).

3. Inference Using MCMC

In practice, we do not have fully continuous data except a few special cases. As a result, the exact
ML method is not applicable. Therefore, we propose a method of parameter estimation of stochastic
Gompertz differential equation via Bayesian inference that is applicable for several data structures.
The advantage of this Bayesian inference is the ability to apply not only a Markov transition data
structure Xt |Xt−1 as well as a data structure given an initial point Xt |X0 such as fish otolith data.

Let us consider a discrete sampling of the process, based on d sample paths, for times ti j, (i =
1, . . . , d; j = 1, . . . , ni). That is, we observe the variables Xti j , the values of which, {xi j}i=1,...,d; j=1,...,ni ,
make up the sample of the inferential study. We assume gamma prior distributions for τ = 1/σ2 ∼
Γ(v1, v2), m ∼ Γ(α1, β1), and β ∼ Γ(α2, β2) and exponential prior distributions Exp(1) for hyperpa-
rameters v1, v2, α1, α2, β1, and β2. We obtain the following full conditional distributions for MCMC
when f (γ| · ) is expressed as the full conditional distribution of γ given the data and other parameters,
for Markov transition data structure case, Xt |Xt−1,

fτ(τ| · ) ∝ τ
dn
2 +v1−1 exp

−
d∑

i=1

ni∑
j=1

τ
(
log

(
Xi j

Xi j−1

)
− m

β

(
e−βti j (e − 1)

)
+

ti j

2τ

)2

2ti j
− v2τ

 , (3.1)

fm(m| · ) ∝ mα1−1 exp

−
d∑

i=1

ni∑
j=1

τ
(
log

(
Xi j

Xi j−1

)
− m

β

(
e−βti j (e − 1)

)
+

ti j

2τ

)2

2ti j
− β1m

 , (3.2)

fβ(β| · ) ∝ βα2−1 exp

−
d∑

i=1

ni∑
j=1

τ
(
log

(
Xi j

Xi j−1

)
− m

β

(
e−βti j (e − 1)

)
+

ti j

2τ

)2

2ti j
− β2β

 , (3.3)

for data structure case given an initial point, Xt |X0,

fτ(τ| · ) ∝ τ
dn
2 +v1−1 exp

− d∑
i=1

ni∑
j=1

τ
(
log

( Xi j

Xi0

)
− m

β

(
1 − e−βti j

)
+

ti j

2τ

)2

2ti j
− v2τ

 , (3.4)

fm(m| · ) ∝ mα1−1 exp

− d∑
i=1

ni∑
j=1

τ
(
log

( Xi j

Xi0

)
− m

β

(
1 − e−βti j

)
+

ti j

2τ

)2

2ti j
− β1m

 , (3.5)
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Table 1: Results of Markov transition data structure and data structure given initial point

parameters Markov structure Initial structure
mean sd median mean sd median

m 1.2100 0.0438 1.1960 1.2010 0.0479 1.1910
b 0.1697 0.1687 0.1687 0.1734 0.1927 0.1734
σ2 0.0281 0.0205 0.0214 0.0305 0.0284 0.0274

fβ(β| · ) ∝ βα2−1 exp

− d∑
i=1

ni∑
j=1

τ
(
log

( Xi j

Xi0

)
− m

β

(
1 − e−βti j

)
+

ti j

2τ

)2

2ti j
− β2β

 , (3.6)

for both cases,

fv1 (v1| · ) ∝
vv1

2 τ
v1−1e−v1

Γ(v1)
, (3.7)

fα1 (α1| · ) ∝
βα1

1 mα1−1e−α1

Γ(α1)
, (3.8)

fα2 (α2| · ) ∝
βα2

2 mα2−1e−α2

Γ(α2)
, (3.9)

fv2 (v2| · ) = Gamma(v1 + 1, τ + 1),
fβ1 (β1| · ) = Gamma(α1 + 1,m + 1),
fβ2 (β2| · ) = Gamma(α2 + 1, β + 1).

Equation (3.1)–(3.9) are nonstandard distributions. However, these distributions can be sampled
using the following Metropolis-Hastings algorithm step:

1. Sample τ̂ ∼ Γ(τ(i), 1).

2. Set τ(i+1) = τ̂ with probability min
(
1, fτ (τ̂| · ) / fτ

(
τ(i)| ·

))
.

Otherwise, set τ(i+1) = τ(i).

Then, we apply the Metropolis-Hastings algorithms in the same manner for m, β, v1, α1, and α2
within the Gibbs sampling algorithm.

4. Application

The presented data were based on studies developed by Schuster and Schuster (1995) for some as-
pects related to the number of the Ehrlich ascites tumor(EAT). We used the transplantation 14d data.
We applied the Bayesian models using Gibbs sampling with Metropolis-Hastings (as shown in the
previous section) to estimate parameter properties of the EAT cell number. Table 1 summarized the
statistics of the estimated parameters using conditional distribution which were Markov transition data
structure and data structure given initial point. Figure 1 showed that the samples of the data structure
of initial point were wider than those of Markov transition data structure. The standard deviation
of the data structure of initial point was greater than Markov transition data structure; however, we
could get parameter estimators with a data structure given initial point. This was the advantage of this
Bayesian inference. Figure 2 contains trace plots and density estimation plots of m, b, and σ2, the
relative growth rate, the rate of decay, and the volatility of growth equation respectively with the data
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Figure 1: Boxplots of parameters with Markov transition data structure and data structure given initial point
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Figure 2: Sample paths and posterior densities of parameters with Gibbs sampling

structure of initial point. The model converges quickly and becomes stable; subsequently, the initial
values are forgotten after approximately 100 iterations. The estimates of parameters are obtained af-
ter 10,000 iterations of the algorithm and a burn-in period of 5,000 iterations. The estimates of the
relative growth rate and the rate of decay of m are equal to m = 1.1910 and β = 0.1734, which is
the median of posterior samples. The values of Xt |X0 were log-normally distributed with the expected
value and variance given as follows:

E (Xt |X0) = X0 exp
(

1.1910
0.1734

(
1 − e−0.1734t

))
,
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Figure 3: Predict line and confidence limits of EAT cell number
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Figure 4: Probabilities greater than 1000 ∗ 107 of EAT cell number

and

Var (Xt |X0) = X2
0

(
e0.0169t − 1

)
exp

(
2 ∗ 1.1910

0.1734

(
1 − e−0.1734t

))
.

Tumor sizes distribution usually reveals that the variance of the response variable increases with time.
In Figure 3, the estimation of the predict line, which is the expected value equation (2.2), and a
confidence interval of 95% , whose bounds are equation (2.3) and equation (2.4), is presented. The
upper bound of the confidence interval increase considerably as time increases. Figure 4 indicates
that the probabilities equation (2.5) exceed a certain threshold, which we set as 1000 ∗ 107. It sharply
increases after a period of time(15 days). These probabilities are an advantage of the stochastic model
without the ordinary Gompertz model.
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5. Conclusion

In this paper, we proposed the parameter estimation method of the stochastic Gompertz growth equa-
tion using Bayesian techniques. The new algorithms are based on the idea that it is possible to apply
the missing or sparse data structures in which we cannot get the exact ML estimator. In close study of
the following, we are going to develop and apply the stochastic differential equations to the relations
between cell size and death rates. The relations between cell size and death rates are identified will
then be able to predict the probabilities of death rates as time increases.
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