• 제목/요약/키워드: Markov chain Monte Carlo

검색결과 270건 처리시간 0.024초

A Bayesian Inference for Power Law Process with a Single Change Point

  • Kim, Kiwoong;Inkwon Yeo;Sinsup Cho;Kim, Jae-Joo
    • International Journal of Quality Innovation
    • /
    • 제5권1호
    • /
    • pp.1-9
    • /
    • 2004
  • The nonhomogeneous poisson process (NHPP) is often used to model repairable systems that are subject to a minimal repair strategy, with negligible repair times. In this situation, the system can be characterized by its intensity function. There have been many NHPP models according to intensity functions. However, the intensity function of system in use can be changed because of repair or its aging. We consider the single change point model as the modification of the power law process. The shape parameter of its intensity function is changed before and after the change point. We detect the presence of the change point using Bayesian methodology. Some numerical results are also presented.

Bayesian Hierarchical Model with Skewed Elliptical Distribution

  • 정윤식
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2000년도 추계학술발표회 논문집
    • /
    • pp.5-12
    • /
    • 2000
  • Meta-analysis refers to quantitative methods for combining results from independent studies in order to draw overall conclusions. We consider hierarchical models including selection models under a skewed heavy tailed error distribution and it is shown to be useful in such Bayesian meta-analysis. A general class of skewed elliptical distribution is reviewed and developed. These rich class of models combine the information of independent studies, allowing investigation of variability both between and within studies, and weight function. Here we investigate sensitivity of results to unobserved studies by considering a hierarchical selection model and use Markov chain Monte Carlo methods to develop inference for the parameters of interest.

  • PDF

Multiple Comparison for the One-Way ANOVA with the Power Prior

  • Bae, Re-Na;Kang, Yun-Hee;Hong, Min-Young;Kim, Seong-W.
    • Communications for Statistical Applications and Methods
    • /
    • 제15권1호
    • /
    • pp.13-26
    • /
    • 2008
  • Inference on the present data will be more reliable when the data arising from previous similar studies are available. The data arising from previous studies are referred as historical data. The power prior is defined by the likelihood function based on the historical data to the power $a_0$, where $0\;{\le}\;a_0\;{\le}\;1$. The power prior is a useful informative prior for Bayesian inference such as model selection and model comparison. We utilize the historical data to perform multiple comparison in the one-way ANOVA model. We demonstrate our results with some simulated datasets under a simple order restriction between the treatments.

Classical and Bayesian methods of estimation for power Lindley distribution with application to waiting time data

  • Sharma, Vikas Kumar;Singh, Sanjay Kumar;Singh, Umesh
    • Communications for Statistical Applications and Methods
    • /
    • 제24권3호
    • /
    • pp.193-209
    • /
    • 2017
  • The power Lindley distribution with some of its properties is considered in this article. Maximum likelihood, least squares, maximum product spacings, and Bayes estimators are proposed to estimate all the unknown parameters of the power Lindley distribution. Lindley's approximation and Markov chain Monte Carlo techniques are utilized for Bayesian calculations since posterior distribution cannot be reduced to standard distribution. The performances of the proposed estimators are compared based on simulated samples. The waiting times of research articles to be accepted in statistical journals are fitted to the power Lindley distribution with other competing distributions. Chi-square statistic, Kolmogorov-Smirnov statistic, Akaike information criterion and Bayesian information criterion are used to access goodness-of-fit. It was found that the power Lindley distribution gives a better fit for the data than other distributions.

Bayesian analysis of random partition models with Laplace distribution

  • Kyung, Minjung
    • Communications for Statistical Applications and Methods
    • /
    • 제24권5호
    • /
    • pp.457-480
    • /
    • 2017
  • We develop a random partition procedure based on a Dirichlet process prior with Laplace distribution. Gibbs sampling of a Laplace mixture of linear mixed regressions with a Dirichlet process is implemented as a random partition model when the number of clusters is unknown. Our approach provides simultaneous partitioning and parameter estimation with the computation of classification probabilities, unlike its counterparts. A full Gibbs-sampling algorithm is developed for an efficient Markov chain Monte Carlo posterior computation. The proposed method is illustrated with simulated data and one real data of the energy efficiency of Tsanas and Xifara (Energy and Buildings, 49, 560-567, 2012).

Derivation of Design Flood Using Multisite Rainfall Simulation Technique and Continuous Rainfall-Runoff Model

  • Kwon, Hyun-Han
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2009년도 학술발표회 초록집
    • /
    • pp.540-544
    • /
    • 2009
  • Hydrologic pattern under climate change has been paid attention to as one of the most important issues in hydrologic science group. Rainfall and runoff is a key element in the Earth's hydrological cycle, and associated with many different aspects such as water supply, flood prevention and river restoration. In this regard, a main objective of this study is to evaluate design flood using simulation techniques which can consider a full spectrum of uncertainty. Here we utilize a weather state based stochastic multivariate model as conditional probability model for simulating the rainfall field. A major premise of this study is that large scale climatic patterns are a major driver of such persistent year to year changes in rainfall probabilities. Uncertainty analysis in estimating design flood is inevitably needed to examine reliability for the estimated results. With regard to this point, this study applies a Bayesian Markov Chain Monte Carlo scheme to the NWS-PC rainfall-runoff model that has been widely used, and a case study is performed in Soyang Dam watershed in Korea. A comprehensive discussion on design flood under climate change is provided.

  • PDF

몬테칼로 깁스방법을 적용한 소프트웨어 신뢰도 성장모형에 대한 베이지안 추론과 모형선택에 관한 연구 (Bayesian Inference and Model Selection for Software Growth Reliability Models using Gibbs Sampler)

  • 김희철;이승주
    • 품질경영학회지
    • /
    • 제27권3호
    • /
    • pp.125-141
    • /
    • 1999
  • Bayesian inference and model selection method for software reliability growth models are studied. Software reliability growth models are used in testing stages of software development to model the error content and time intervals between software failures. In this paper, we could avoid the multiple integration by the use of Gibbs sampling, which is a kind of Markov Chain Monte Carlo method to compute the posterior distribution. Bayesian inference and model selection method for Jelinski-Moranda and Goel-Okumoto and Schick-Wolverton models in software reliability with Poisson prior information are studied. For model selection, we explored the relative error.

  • PDF

A Bayesian Model-based Clustering with Dissimilarities

  • Oh, Man-Suk;Raftery, Adrian
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2003년도 추계 학술발표회 논문집
    • /
    • pp.9-14
    • /
    • 2003
  • A Bayesian model-based clustering method is proposed for clustering objects on the basis of dissimilarites. This combines two basic ideas. The first is that tile objects have latent positions in a Euclidean space, and that the observed dissimilarities are measurements of the Euclidean distances with error. The second idea is that the latent positions are generated from a mixture of multivariate normal distributions, each one corresponding to a cluster. We estimate the resulting model in a Bayesian way using Markov chain Monte Carlo. The method carries out multidimensional scaling and model-based clustering simultaneously, and yields good object configurations and good clustering results with reasonable measures of clustering uncertainties. In the examples we studied, the clustering results based on low-dimensional configurations were almost as good as those based on high-dimensional ones. Thus tile method can be used as a tool for dimension reduction when clustering high-dimensional objects, which may be useful especially for visual inspection of clusters. We also propose a Bayesian criterion for choosing the dimension of the object configuration and the number of clusters simultaneously. This is easy to compute and works reasonably well in simulations and real examples.

  • PDF

Bayesian Approach for Determining the Order p in Autoregressive Models

  • Kim, Chansoo;Chung, Younshik
    • Communications for Statistical Applications and Methods
    • /
    • 제8권3호
    • /
    • pp.777-786
    • /
    • 2001
  • The autoregressive models have been used to describe a wade variety of time series. Then the problem of determining the order in the times series model is very important in data analysis. We consider the Bayesian approach for finding the order of autoregressive(AR) error models using the latent variable which is motivated by Tanner and Wong(1987). The latent variables are combined with the coefficient parameters and the sequential steps are proposed to set up the prior of the latent variables. Markov chain Monte Carlo method(Gibbs sampler and Metropolis-Hasting algorithm) is used in order to overcome the difficulties of Bayesian computations. Three examples including AR(3) error model are presented to illustrate our proposed methodology.

  • PDF

Marginal Likelihoods for Bayesian Poisson Regression Models

  • Kim, Hyun-Joong;Balgobin Nandram;Kim, Seong-Jun;Choi, Il-Su;Ahn, Yun-Kee;Kim, Chul-Eung
    • Communications for Statistical Applications and Methods
    • /
    • 제11권2호
    • /
    • pp.381-397
    • /
    • 2004
  • The marginal likelihood has become an important tool for model selection in Bayesian analysis because it can be used to rank the models. We discuss the marginal likelihood for Poisson regression models that are potentially useful in small area estimation. Computation in these models is intensive and it requires an implementation of Markov chain Monte Carlo (MCMC) methods. Using importance sampling and multivariate density estimation, we demonstrate a computation of the marginal likelihood through an output analysis from an MCMC sampler.