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Bayesian Hierarchical Model
with Skewed Elliptical Distribution !

Younshik Chung?

Abstract

Meta-analysis refers to quantitative methods for combining results from independent
studies in order to draw overall conclusions. We consider hierarchical models including
selection models under a skewed heavy tailed error distribution and it is shown to be useful
in such Bayesian meta-analysis. A general class of skewed elliptical distribution is reviewed
and developed. These rich class of models combine the information of independent studies,
allowing investigation of variability both between and within studies, and weight function.
Here we investigate sensitivity of results to unobserved studies by considering a hierarchical
selection model and use Markov chain Monte Carlo methods to develop inference for the
parameters of interest.

KEYWORDS: Bayesian meta-analysis; Density generator; Elliptical distribution; Gibbs
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1. Introduction

Meta-analysis is a quantitative method for combining results from independent studies
and combining information which may be used to evaluate cumulative effectiveness, plan
new studies and so on, with wide application in the field of medicine. There are two main
problems in meta-analyis. One is that the study effects are heterogeneous and usually
account for the random effect or hierarchical models (Morris and Normand, 1992). The
other is that meta-analysis may have the publication bias for example, only studies with
significant results are observed. When there exists the publication bias, the weight function
can be used to account for such bias (Larose and Dey, 1997).

Morris and Normand(1992) consider a hierarchical model as follows; for i = 1,...,n,

Yilas, 07 ~ N(a,07), (L1)
ailp, % ~ N(p,03),
p~Nab), o~ IG(cd),
where IG(c, d) represents the inverse gamma distribution with shape parameter ¢ and scale

parameter d. For meta-analysis, here we can interprete that Y; is the observed study effect,
a; is the true study effect, o2 is the within-study variance, p is the average study effect
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and o2 is between-study variance. We fix o; because it is usually the standard error of an
estimate. Further, u and o2 are assumed to have conjugate priors.

In meta-analysis, model (1.1) is often not the case because it is one of the published
research which tends to be biased toward statistical significance (Rosenthal, 1979). To
solve such problem, Silliman(1997) introduces hierarchical selection models(HSM) which
incorporate weight function into the hierarchical model in (1.1). Thus the probability of
observing any specific study effect, y;, is multiplied by some nonnegative function w(y;).
That is, the random variable Y; is assumed to be observed from the weighted distribution
with density

w(y:) f(yiloi, o)

e (yilas, 0:) = Cu ) (1.2)

where f(y:i|ai,0:) = N(y;; ei,0;) and
Cy = /w(x) f(zla;, 04)dz, (1.3)

is the normalizing constant. For the choice of weight function w(y;), see Larose and
Dey(1996) and Silliman(1997). Therefore, Silliman(1997)’s HSM is given as following;

Yvi]aiao-i ~ fw(yi[aiaai)a ailﬂ'vai ~ N(ﬂ:”i)a
woo~ N(aab)v 0'(2! ~ IG(Ca d)a (1.4)

where f*(y;|a;,0;) is defined in (2.2). Recently, Chung, Dey and Jang(2000) considered
semiparameric approach to hierarchical selection model for Bayesian meta-analysis.

In this paper, we consider hierarchical model with skewed elliptical distribution for
Bayesian meta analysis. Here, our Bayesian hierarchical model with skew elliptical distri-
bution is considered as follows; for i = 1,...,n,

Y, = a; + o€ (1.5)
€ ~SE(0,1;6.), a; ~ N(u,02)
p~ N(a,b), 02~ IG(c,d),d ~ m(de)

where SE(0,1;0) denotes the skewed elliptical distribution defind in section 2 later on and
é is called skewness parameter and 7 (8,) denotes the prior density of §.. If § = 0, error has
the symmetric distribution. IG({c, d) represents the inverse gamma distribution with shape
parameter ¢ and scale parameter d.

Such non-normal disturbance in statistical model has been investigated by several
authors for theoretical and applied interest. Especially as the pioneerer of this area, Zell-
ner(1976) considered a Bayes and classical analysis of linear multivariate Student ¢ regression
models. This was extended to scale mixture of normal distributions in Jammalamadaka,
Tiwari and Chib(1987) and Chib, Tiwari and Jammalamadaka (1988), whereas Osiewal-
ski(1991) and Chib, Osiewalski and Steel(1991) and Osiewalski and Steel(1993) examined
a further generalization to the entire class of multivariate elliptical or ellipsoidal densities.
Azzalini and Dalla-Valle(1996) present a gneral theory for the multivariate version of skew-
normal distribution which extends the class of normal distributions by the addition of a
shape parameter. Also Azzalini and Capitanio(1999) demonstrated that this distribution



has resonable flexibility in real data fitting. Recently, Branco and Dey(2000) proposed a gen-
eral class of multivariate skew-elliptical distributions which contains the multivariate normal,
Student ¢, exponential power and Pearson type II, but with an extra parameter to regulate
skewness. Sahu and Dey(2000) considered the regression problem under a skew-elliptical
error distribution and developed a Bayesian methodology for the inference of regression
parameters. '

The rest of this article is organized as follows. Section 2 reviews and develops the
multivariate skew elliptical distribution. The particular cases of normal and Student ¢
distributions are explained as examples. In section 3, we develop Bayesian hierarchical
model with skewed elliptical errors which also contains the hierarchical selection models.
Also, we consider the detail computational scheme under skewed normal and Student ¢
distribution using MCMC method.

2. Skewed Elliptical Distributions

In this section, we consider the skewed elliptical distribution which is generalized from
the skewed normal distribution proposed by Azzalini and Dalla-Valle(1996).

2.1. Multivariate elliptical distribution

Definition 2.1. An n x 1 random vector Y is said to have an elliptical distribution
with parameters p(teh location vector) and X(dispersion matrix) of dimensions n x 1 and
n X n, respectively, with ¥ being positive definite if ¥ has density function of the form

fr(y) = 1272y - 'S y - w), (2.1)

for a non-increasing function k(™ u > 0, such that

n L(n/2) h(u;n)
A" (u) = 7(:152 f0°°u"/2-u1:(u;n) o (2.2)

where h(u) is a non-decreasing function such that the integral [~ u™2~1h(u; n)du exists. In

this paper we shall always assume that the existence of the density (2.4). The function A(™
is called the density generator and we write Y ~ El,(u, Z; A(™). Thus, Z = Z~1/2(Y —p) ~
El,(0,1,; A™) and has a spherical density function h(™(||z][?), z € R™.

2.2. Chen, Dey and Shao’s Method
2.2.1. Univariate skew elliptical distribution

In this section we present a class of skewed elliptical diatribution using the approach
given in Chen, Dey and Shao(1999), where the skewed random variable evolve from a sum
of a symmetric and positive random variables, and is given as

Y =67 +e. (2.3)

The important point here is to have € having a symmetric, unimodal and Z having a positive
skewed distribution. When § = 0 we get the original symmetric distribution. The parameter
§ has as easy interpretation and is called the skewness parameter, when é > 0(§ < 0) means
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right(left) skewness. To see this, we assume that Z and € have upto third moments. Let 0%
and o2 be tha variances of Z and ¢, respectively, and p3, be the standardized third moment
of Z,ie. u} = E[(Zp(Z))/oz]®. Then, the standardized third moment of Y is given by

YE(Y)}S — 630%#‘%
oy od

ud = E| , (2.4)
where 0% = Var(Y) = §20% + 02. We are assuming that Z is skewed to the right, therefore
1% > 0. Then (2.9) implies that the marginal distribution of Y is skewed to the right(left)
when § > 0(é < 0).

From now, we expand the results to the simple elliptical class, where e ~ EL(0, 1, g2)
and z ~ El7(0,1, g1), a positive elliptical distribution.

Theorem 2.1. (Branco and Dey, 1999) Suppose there is a generator function g such
that

1/2 o0
g2(u) = rﬁ/{) g(r +u)dr (2.5)
and
giw) = LD g — e, (2.6

a(ate) 7

where g2 and g; are respectively the generator function of € and Z. Then, the probability
density function(pdf) of Y as defined in (2. } is

fr(y) = 2(52 + 1)_%fgz[_11'*)“;]Fyq(y)[( ¥ (2.7)

(62 + 1 y+1ﬁ]

where f, and F, are respectively the pdf and the cdf(cumulative distribution function) of
El(0,1;9) and

_glutalw) o e
9W)(u) = mmw»’“) : (2.8)

2.2.2. Conditioning approach to multivariate case

Let ¢ and Z denote m dimensional random vectors. Let p be an m dimensional vector
and ¥ be m x m positive definite matrix. Assume

X = (&, Z)t ~ Elam (8, g*™), (2.9)

8 = (u,0)", Q=(§ ?)

and I is the m x m identity matrix. We consider a skew elliptical class of distributions by
using the tranformation

where

Y=DZ+¢ (2.10)
where D is a diagonal matrix with elements ;,...,6,,. Let § = (d1,...,dn)t. The class is
developed by considering the random variable

Y1z >0l (2.11)



where Z > 0 means that Z; >0for¢=1,...,m.

Theorem 2.2. Under the above assumption, the pdf of Y'|Z > 0 is given by

Fflp,B,D;9™) = 2™ fy(ylu, T + D% g(™) x
F(I-D(S+D*)7'DI"*D(S + D*)~'ul0, I; {77 ),

(2.12)

where

%) gla + u; 2m)
(M) = =2 L ’ >0 2.13
9" (w) 7% [r%lg(a + u;2m)dr’ @5 (2.13)
and

qys) =i (E+ D)y, yu=y-—p. (2.14)

Example 2.1. Skew normal distrbution

Let h(u;m) = e"%. Then it is easy to show that ¢(*) = (27r)~™/2 and ggai) is free
of q(y.). Now, the pdf of the skew normal distribution is given by
f@lw,=,D) = 27T+ D?|7 2 phin[(T + D?)7H3(y — p)] X
op((I-D(E+D)'D)VAD(E+ D) Ny —p)l,  (215)

where ¢, and ®,, denote the density and cdf of m dimensional normal distribution with
mean ) and covariance matrix identity.

Ezample 2.2. Skew t distrbution

Let
h(u;2m,v) = [1+ %]—sz—m (2.16)
Then
o™ (wiv) = Dm)[r(v + m)] ™/ (E2 (14 T Eyiekams ()
Therefore, the density of the multivariate skew t distribution is given by
@l v) = 2™t (ylp, T+ D?) x
T jj(z*’ )~/*(I - D(E + D*)™ D)7/2D(E + D)7 y3.18)

3. Bayesian hierarchical model with skewed error

We consider hierarchical model where the error distribution follows the skew ellipti-
cal distribution. Suppose that we have n independent observed one-dimensional response
variables y;. That is,

Y; = a; + 0465, € ~ SE(0,1,8;9),
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Qg ~ N(:U/) Ua), (31)

Further y; ~ SE(a;,0?,6;g")) independently, for i = 1,...,n, To completely specify the

Bayesian model, we need to specify prior distributions for all the parameters. Let a =

(a1,...,a,)t and 0% = (02,...,02)". We assume yu ~ N(a,b). For 67 and o2, we asumme

gamma, priors, I'(k1, k1) and T'(ks, k2), respectively, where the parametrization has mean 1
and k’s are assumed to be a known parameters. When the skewed ¢ models are considered,
we need prior distribution for the degree of freedom parameter v.

Now the posterior density is given by
”(N7a702,02a5,1’1y1,---»yn) X (32)

SE(yip+a,~,a?,5;g(1))N(a,~[0,02) X m ;1,,0',0'2,(5,1/)
o [0

i=1

where 7(u,0,02%,8,v) is the joint prior density of u,5,02,8 and v. Note that for the skewed
normal models, the distribution of v is omitted.

3.1. Posterior Propriey

In practice we may experiment with improper prior distributions for y,s? and 02. A
natural question in such a case whether the full posterior distribution is proper.

Theorem 38.1. Suppose that the priors of § and v are proper. Then the posterior in
(3. ) is proper under the skew normal or skew ¢ model if n > 1.

3.2. Hierarchical selection model with skew normal error

Assume that z; and u; are distributed to the positive normal and the standardized
normal distribution, respectively. Then, our Bayesian hierarchical selection model with

skewed normal error can be written as follows; fori =1,---,n,
" — . . . zi~N+(0a1)
YL —011.+0'1,(5Z1 +U1,)a { u; NN(O,l)
Qg ~ NM’ Ui),
and
.U’ao'ouo'i)(s"vw(:u‘aga’ghé)' (33)
Then, for ¢ = 1,---,n, the density function under the weigh function w(y;) can be viewed
as

yilo, 04,8, 2 ~ [Clog, 01,8, )] T w(yi) N (yilo + 0382, 07),
where C(a;,04,6,2;) = [ w(y:)N(yi|la; + 0:dz;, 02)dy; is the normalizing constant.
Therefore, the joint density function of y;, a;, z; given u, 0., 0,9 is expressed as follows;

[yi,ai,Zil,Ur,Ua,Ui,é] :[yilai)o-i)(sazi] [ailu’aa] [21]



s — g:82:)2
°<[C(ai>‘7i,J,Zi)]_l(og)_%ezp (— (yi — o — 0362;) )

3
207

x(o2)" Texp (-%) exp (-%-) I(z > 0,). (3.4)

a

Here, the following priors are assumed;

(4] ~ N(a,b), [6] ~ N(m,7),
[02] ~ IG(c1,dr) ,  [07] ~ IG(c2,da) (3.5)

Since the joint posterior density is proportinal to the product of the likelihood function and
the prior dendity functions, is given as follows;

iljl: {[C(ai,ai,d, 2)] "Moo Feap (_ (yi — a;;%aidzi)z) }
o (252 (52 (52

=1

X ﬁ { ~lez D) g <—j—§) } (02)~ (e egp (——%—) . (3.6)

i=1 ¢ @

Then in order to apply the Markov chain Monte Carlo(MCMC) method to (3.6), the
following full conditional distribution are needed,;

[esla; (G # 1), y,2, 1,6, 04,9]

2 2 2 2
ooty [loalyi —0idz) + oip ogo;
[C(alaaly 5, Z/L)] N ( 0’3 + 0_? ,o_g + o’z (3'7)
bY a;+0a  bol
6,00,0] ~N : ) a )
(tla, y, 2,6,04,0] ( o bn+ag> (3.8)

Tzl -1 '
[(ﬂgﬁy_:ﬂ’?g’o-a)Q] ~ [C(ai,Ui,(S,Zi)]—lN <——Zz—+_—~ (Zz + ) > , (39)

(yi — o)

. (4 ; ~ O M1 a7+
el g 357 #00,8,0002] ~ [l o0 821N (25,

(14627 ) (3.10)

1
o5l y, n,2,6,0) ~ IG (n + e, 52(% -+ d1> , (3.11)

. . _ 5 \Y: — 3
[Uglg’ y_ap'agj 6) O'a,O'j(] 7+' Z)] ~ [C(ai,o’ivéa Zt)] lezp (L‘_a’l—)—)

IG< +02,;( -—ai)2+d2>. (3.12)

So the sampling for (a;,d, 2;,0;) is needed the Metropolis-Hastings algorithm (Metropolis
et al., 1953; Hastings, 1970).
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