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Abstract

A Bayesian model-based clustering method is proposed for clustering objects on
the basis of dissimilarites. This combines two basic ideas. The first is that the objects
have latent positions in a Euclidean space, and that the observed dissimilarities are
measurements of the Euclidean distances with error. The second idea is that the latent
positions are generated from a mixture of multivariate normal distributions, each one
corresponding to a cluster. We estimate the resulting model in a Bayesian way using
Markov chain Monte Carlo. The method carries out multidimensional scaling and
model-based clustering simultaneously, and yields good object configurations and good
clustering results with reasonable measures of clustering uncertainties. In the examples
we studied, the clustering results based on low-dimensional configurations were almost
as good as those based on high-dimensional ones. Thus the method can be used as a
tool for dimension reduction when clustering high-dimensional objects, which may be
useful especially for visual inspection of clusters.

We also propose a Bayesian criterion for choosing the dimension of the object con-
figuration and the number of clusters simultaneously. This is easy to compute and

works reasonably well in simulations and real examples.

1 Introduction

Cluster analysis is the automatic grouping of objects into groups on the basis of numerical
data consisting of measures either of properties of the objects, or of the dissimilarities
between them. It was developed initially in the 1950s (e.g. Sneath 1957; Sokal and Michener
1958), and the early development was driven by problems of biological taxonomy and market

segmentation. More recently, clustering has attracted a great deal of attention as a useful
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tool for grouping genes and samples in DNA microarray experiments, clustering documents
on the World Wide Web and in other text databases, and grouping pixels in medical images
so as to identify features of clinical interest.

Model-based clustering is a framework for putting cluster analysis on a principled sta-
tistical footing; for reviews see McLachlan and Peel (2000) and Fraley and Raftery (2002).
It is based on probability models in which objects are assumed to follow a finite mixture of
probability distributions such that each component distribution represents a cluster. The

. model-based approach has several advantages over heuristic clustering methods. First, it
clusters objects and estimates component parameters simultaneously, avoiding well-known
biases that exist when they are done separately. Second, it provides clustering uncertainties
which is important especially for objects close to cluster boundaries. Third, the problems of
determining the number of components and the component probability distributions can be
recast as statistical model selection problems, for which principled solutions exist. Unlike
the previously mentioned heuristic clustering algorithms, however, model-based clustering
requires object coordinates rather than dissimilarities between objects as an input. Thus,
despite the important advantages of model-based clustering, it can be used only when object
coordinates are given, and not when dissimilarities are provided.

Even when object coordinates are given, visual display of clusters in low dimensional
space is often desired since it may provide useful information about the relationships between
the clusters and the underlying data generation process (Hedenfalk et al, 1999; Yin, 2002;
Nikkila, 2002). One way to reduce the dimensionality of objects for visual display in lower
dimensional space is multidimensional scaling (MDS). In MDS, objects are placed in a
Euclidean space while preserving the distance between objects in the space as well as possible.

In this paper, we develop a model-based clustering method for dissimilarity data. We
assume that an observed dissimilarity measure is equal to the Euclidean distance between the
objects plus a normal measurement error. We model the unobserved object configuration as
a realization of a mixture of multivariate normal distributions, each one of which corresponds
to a different cluster. We carry out Bayesian inference for the resulting hierarchical model
using Markov chain Monte Carlo (MCMC). The resulting method combines MDS and model-
based clustering in a coherent framework.

Other important issues are the choice of the number of clusters and of the dimension of
the objects. Oh and Raftery (2001) proposed an easily computed Bayesian criterion called

MDSIC for choosing object dimension. We extend this to determine the number of clusters
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as well. The resulting criterion can be computed easily from MCMC output.

2 Model for Clustering with Dissimilarities

Let &;; denote the dissimilarity measure between objects i and j, which is assumed to be
functionally related to p unobserved attributes of the objects. Let x; = (zi1, ..., Tip) denote
an unobserved vector representing the values of the attributes possessed by object i.

As in Oh and Raftery (2001), we model the true dissimilarity measure d;; as the dis-

tance between objects ¢ and j in a Euclidean space, i.e., 6;; = /D ko1 (T — z;x)%. In
practical situations, the true dissimilarity measure can be different from Euclidean distance
and there can be measurement error in observations. We therefore assume that the ob-
served dissimilarity measure, d;;, is equal to the true measure, d;;, plus a Gaussian error.
In addition, since dissimilarity measures are typically given as positive values we restrict
the observed dissimilarity to be positive. Thus, given the Euclidean distance d;;, the ob-
served dissimilarity measure d;; is assumed to follow the truncated normal distribution
dij ~ N(6i;,0%) I(di; > 0), i # j,4,j = 1,...,n. Note that d;; is related to X = {x;},
called the object configuration, only through d;;. To represent clustering, we assume that

the object configuration is a sample from a mixture of multivariate normal distributions,
e
xi~ Y &5 Nu, Ty), (1)
j=1

where each component normal distribution represents a cluster.

We use the following priors for the model parameters: o2 ~ IG(a,b),  (€1,...g4) ~
Dirichlet(1, ..., 1} ,u; ~ N{j0,T;) T ~ IW(a, B;), where IG(a,b) is the inverse Gamma
distribution with mode b/(a + 1) and IW is the inverse Wishart distribution.

3 Posterior Inference

It is well known that inference for mixture models can be simplified with latent variables
which indicate the group memberships of objects. We define latent variables K; such that
P(K; = j) = ¢; and x; belongs to class j if K; = j, so that x;|K; = j ~ N{(p;,Tj).
From the prior and the model, the full conditional posterior distributions (densities)of each
parameter given all the other unknowns are given in simple forms. Iterative generation

of the unknown parameters from their full conditional distributions for a sufficiently long
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time yields samples of the parameters from the joint posterior distribution, and posterior

inference can be done by using the samples.

4 A Bayesian Selection Criterion for Configuration Di-
mension and the Number of Clusters

Posterior inference as described in the previous section presumed that the dimension, p,
of the object configuration, and the number of clusters, G, are given. These are typically
unknown, however, and we now propose a statistical method for choosing p and G. Oh
and Raftery {(2001) suggested a dimension selection criterion for MDS, called MDSIC, which
works well with Euclidean distance measures with small or moderate error size. In this
section, we extend MDSIC and propose a new Bayesian selection criterion, named MIC, for
choosing both p and G simultaneously.

We view the overall goal of our analysis as being to choose the best object configuration
across the dimension p and the number of clusters G. We therefore base our model selection
criteria on m(Xpq,p, G|D), the posterior density function of X, p, G, given data D at X =
X,a, where X, is the best object configuration given p and G.

We propose a selection criterion, which we call MIC, as follows. Let

AIIClG = (m—2)logSSR1G—2log7r(Xlg)
P
m(X4c|D)
MICye = —2log ——+——~ 2
o = 2 2oe et ) ?)
Y4
I(XqalD)  m(Xyc)
= -2lo 4 =/ _2logA 3
2 2R I oD 7 (Kye1.0) " @
p
= (m-2)log(SSRyg) — 2logm(Xpa) — 2D log Aq. (4)
q=1

Note that (m — 2)log(SSR,c) can be considered as a measure of fit, —2log7(X,¢) plays
the role of a penalty for complexity, and —2 Efl’zl log A4 is a cumulative correction factor for
the shrinking effect. The values of p and G that yield the minimum of MIC)¢ are viewed

as best.
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5 Discussion

We have proposed a model-based clustering method for the situation where the data consist
of dissimilarity measures between pairs of objects. It is also useful for clustering objects in
low dimensional space for visual display and parsimony even when the object coordinates
are given, but are high-dimensional. 7

When the estimated dimension is high, we have compared BMDS with the selected di-
mension with BMDS with low dimension (2 or 3). We found that the clustering results were
very similar, and that those misclassified in the low-dimensional analysis had high cluster-
ing uncertainties, which is good. Thus, in practice BMDS low dimensional configurations
may be good enough for many purposes, especially if it is followed up with more intensive
investigation of objects with high clustering uncertainty.

We have proposed a Bayesian criterion, MIC, for simultaneously selecting the object
dimension and the number of clusters, which is easy to compute from MCMC output. In
our simulations and in real examples, it worked reasonably well in all cases. MIC varied
more between dimensions than between numbers of clusters, and the choice of dimension
was not affected by the choice of the number of clusters. Thus, as an approximation we
suggest selecting the dimension assuming one cluster (i.e. using BMDS), and then choosing

the number of clusters given the selected dimension. This greatly reduces computation time.
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