
Communications for Statistical Applications and Methods
2017, Vol. 24, No. 5, 457–480

https://doi.org/10.5351/CSAM.2017.24.5.457
Print ISSN 2287-7843 / Online ISSN 2383-4757

Bayesian analysis of random partition models with
Laplace distribution

Minjung Kyung1,a

aDepartment of Statistics, Duksung Women’s University, Korea

Abstract
We develop a random partition procedure based on a Dirichlet process prior with Laplace distribution. Gibbs

sampling of a Laplace mixture of linear mixed regressions with a Dirichlet process is implemented as a random
partition model when the number of clusters is unknown. Our approach provides simultaneous partitioning and
parameter estimation with the computation of classification probabilities, unlike its counterparts. A full Gibbs-
sampling algorithm is developed for an efficient Markov chain Monte Carlo posterior computation. The proposed
method is illustrated with simulated data and one real data of the energy efficiency of Tsanas and Xifara (Energy
and Buildings, 49, 560–567, 2012).
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1. Introduction

Clustering algorithms attempt to understand a partition of a finite set of objects into a potentially
predetermined number of nonempty subsets; in addition, the number of partitions is often unknown
beforehand. We focus on probability models for partitions and avoid purely algorithmic methods.
As a special case, product partition models (PPMs), introduced by Hartigan (1990) and Barry and
Hartigan (1992), are based on modeling random partitions of the sample space. These assume that
observations in different elements of a random partition of the data are actually independent. So if the
probability distribution for the random partitions is in a product form prior to obtaining observations,
it is also then in product form after obtaining the observations (Jordan et al, 2007). In inference can
therefore be made by conditioning on and averaging over partitions, with a random partition:

P(ρn = {S 1, . . . , S k}) = K
k∏

j=1

c(S j),

where ρn is a partition of the objects in a family of subsets S 1, S 2, . . . , S k of S 0 = {1, 2, . . . , n} and
c(S ) is a non-negative cohesion that is specified for each subset of S 0. Here, the normalizing constant
K =

∑
ρ∈P

∏|ρ|
j=1 c(S j), where P is the set of all possible partitions into nonempty sets. Together with

independent sampling across clusters, a PPM can be described as

P(y|ρn = {S 1, . . . , S k}) ∝
k∏

j=1

c(S j)P(yS j ), (1.1)
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where P(yS k ) is the density for subcluster S k and the cohesion is c(S j)
Cohesion is the measure of the strength of the functional relationship of the elements in each

subsets that then controls the partition of subsets that can be roughly thought of as a probability. A
popular choice is c(S ) = m(|S |−1)! where m is a precision parameter and |S | is the number of elements
in S . It follows that the resulting probability model for ρn is

P (ρn) =
mk−1 ∏k

j=1

(
n j − 1

)
!∏n

i=1(m + i − 1)
, (1.2)

where n j = |S j| is the number of elements in cluster j that is known as the Dirichlet process (DP)
random partition (Blackwell and MacQueen, 1973). Details are in McCullagh and Yang (2007),
Müller et al.(2015), Pitman (1996), Quintana and Iglesias (2003), and references therein.

A similarly popular prior on random partitions is model-based clustering and its extended models,
which fit a finite mixture of multivariate Gaussian distributions with various variance structures to the
data (Banfield and Raftery, 1993; Fraley and Raftery, 2002, 2007; McLachlan and Peel, 2000; Wolfe,
1970). It implements an Expectation-Maximization (EM) algorithm (Dempster et al., 1977) to obtain
a local optimum of the log-likelihood. To select the best number of clusters, model selection criterion
such as Bayesian information criterion (BIC) was employed after fitting several mixture models with
different numbers of clusters.

In the Bayesian literature, the nonparametric Bayesian clustering approach is usually based on a
mixture of the DP (Antoniak, 1974; Ferguson, 1973) and an unknown number of clusters. Especially,
a Dirichlet process mixture (DPM) of regression models has been widely used as a flexible semipara-
metric approach for clustering and density estimation (Escobar and West, 1995). The implementation
of the DP mixture models has been made feasible by the modern method of Bayesian computation
and efficient algorithms (MacEachern and Müller, 1998; Neal, 2000). Product partition type priors
on a normal mixture of regression model also have been widely used for the tractable, probability-
based, objective function to identify good partitions (Booth et al., 2008; Crowley, 1997; Quintana and
Iglesias, 2003).

Recently, a natural extension of the random partition model has been considered with incorporat-
ing covariate values in its definition. MacEachern (1999, 2000) proposed a collection of dependent
random probability measures with marginal distributions given by the DP. This idea has been extended
and applied to the construction of various types of random probability measures such as the density
regression (Dunson et al., 2007; Tokdar et al., 2010). A covariate-dependent extension was proposed
by Müller et al., (2011) and some alternative extensions to build covariate-dependent random partition
models can be found in Park and Dunson (2010), and Argiento et al., (2014). Airoldi et al., (2014)
also provided a general family of nonexchangeable species sampling sequences dependent on the re-
alizations of a set of latent variables. Murua and Quintana (2017) recently provided the construction
of a covariate-dependent prior distribution based on the Potts clustering model by covariate proximity
in both the formation of clusters, and the prior predictive distributions for the multivariate multiple
linear regression of the multivariate normal error.

Park and Dunson (2010) argued that a semiparametric Bayesian approach with an infinite number
of clusters can be considered by letting yi ∼ f (ϕi), with ϕi ∼ G and G assigned a DP prior. In
marginalizing out G, a prior on the partition of subjects into clusters is formed with cluster-specific
parameters consisting of independent draws from G0 as base distribution in the DP. This prior is
a type of PPM (Quintana and Iglesias, 2003) and it is appealing to marginalize out G in order to
increase efficiency in computation and simplify interpretation. They also argued that the DP induces a
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particular prior on the partition and one can develop alternative classes of PPMs by replacing the DP
prior on G with an alternative choice such as species sampling models (Ishwaran and James, 2003;
Pitman, 1996) which are a very broad class of nonparametric priors that include the DP as a special
case.

Most of the mixture of the regression model are considered with a normality assumption for the
distribution of subcluster P(yS k ). With normality assumption on the distribution of error in each clus-
ter, various form of mean might be able to be estimated easily based on feasible computation and
efficient algorithms. Instead in this research, we propose a Laplace distribution for the distribution of
subclusters. Least absolute deviation (LAD) regression has been widely used in practice by assuming
that the error terms follow a Laplace distribution. Because it is known that the least absolute value
(LAV) estimator is statistically more efficient than the least squares estimator (normal error regression
model) when disturbances come from heavy-tailed distributions such as non-normal stable distribu-
tions, the Laplace distribution or contaminated normal distribution (Dielman, 1984). He also argued
that the asymptotic distribution of the LAV estimator is known under a fairly general set of assump-
tions, allowing for statistical inference in large samples. Details on the theoretical properties of LAD
can be found in Dielman (1984, 2005).

Song et al., (2014) recently proposed a robust estimation procedure for mixture linear regression
models with error terms that follow a Laplace distribution. They argued that LAD regression has been
widely used in practice to consider the impact of outliers. Outliers are known to impact more heavily
on mixture linear regression models than on the usual linear regression models since the outliers affect
the estimation of the regression parameters as well as totally blur the mixture structure. The estimation
procedure of the EM algorithm has been studied using the fact that the Laplace distribution can be
written as a scale mixture of a normal and a latent distribution.

In this research, we develop a full Bayesian estimation procedure for the linear regression mixture
model of the full conditional posterior distribution with Laplace distribution. For the prior on the
clustering structure, we consider a random partition model of the DP process based on a truncated
approximation of stick-breaking priors (Ishwaran and Zarepour, 2000) because the proposed model
leads to a tractable, probability-based, objective function to identify good partitions. For the full pos-
terior distribution of Laplace distribution, we consider that the Laplace distribution is a scale mixture
of a normal distribution with an exponential mixing density (Andrews and Mallows, 1974). Details
are discussed in the following section.

We also apply a post process to posterior samples for parameters of the proposed model to choose
a single clustering estimate to compromise the “label-switching” problem (Richardson and Green,
1997; Stephens, 2000). We follow Fritsch and Ickstadt (2009), which finds a single clustering estimate
by maximizing the posterior expected adjusted Rand index with the posterior probabilities of two
observations being clustered together.

We use hierarchical models and Gibbs sampling to obtain estimators for Laplace distribution mix-
ture models. In Section 2, we consider the hierarchical structure of models and the basic identity of a
scale mixture of a normal distribution for Laplace distribution. Section 3 provides details on Markov
chain Monte Carlo (MCMC) procedures based on the full conditional distribution of parameters and
post process based on the posterior similarity matrix to choose a single cluster and important oscil-
lating functions in each curve based on the posterior expected adjusted Rand index. We compare the
proposed Laplace regression mixture and the normal mixture in Section 4, using simulations and data
sets. There is a discussion in Section 5.
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2. Random partition model of Laplace distribution

We begin with construction of the random partition model with DP prior based on a Laplace linear
regression. We discuss the mixture structure and the basic identity of the Laplace distribution which
is a scale mixture of a normal distribution with an exponential mixing density.

2.1. Random partition model

We discussed in Section 1 that a PPM with a cohesion function c(S ) = m (|S | − 1)! where m is a
precision parameter and |S | is the number of elements in S , is the DP random partition and the resulting
probability model for the random partition is in (1.2).

Blackwell and MacQueen (1973) proved that for Y1, . . . ,Yn iid from G ∼ DP, the joint distribution
of Y is a product of successive conditional distributions of following form:

yi|y1, . . . , yi−1,m, µ, τ2 ∼ 1
i − 1 + m

i−1∑
l=1

δ(yl = yi) +
m

i − 1 + m
f
(
yi|µ, τ2

)
, (2.1)

where f (yi| µ, τ2) is a probability density function: the base measure, and δ(·) denotes the Dirac delta
function. Quintana and Iglesias (2003) also show that the joint marginal distribution of (2.1) can be
expressed as the PPM as

P(y) =
n∏

i=1

 1
i − 1 + m

i−1∑
l=1

δ(yl = yi) +
m

i − 1 + m
f
(
yi|µ, τ2

)
=

n∑
k=1

1∏n
i=1(m + i − 1)

k∏
j=1

m(n j − 1)!

 n j∏
l=1

f
(
yl|µ, τ2

) n j∏
l=2

δ(yl = y j)

= K∗
n∑

k=1

k∏
j=1

c(S j) f j(yl), (2.2)

where f j(yl) is the density function of yl, n j is the sample size in cluster j, and l ∈ S j, S j is the subset
of S 0 = {1, 2, . . . , n} for cluster j and K∗ is the normalizing constant. This expression is known as the
Blackwell and MacQueen (1973)’s Pólya urn representation of the DP.

The algorithms of Bush and MacEachern (1996) are some of the most widely-used approaches for
the posterior computation of Pólya urn DP. They argued that their approach first updates the configura-
tion of subjects to clusters based on the Pólya urn scheme in (2.1), and then separately updated cluster
specific parameters given the cluster configuration with conjugate priors. Extension to non-conjugate
priors is discussed by MacEachern and Müller (1998) and Neal (2000) based on Metropolis-Hastings.
Park and Dunson (2010) also considered a generalized Pólya urn scheme based on a distance metric
through a flexible nonparametric model for the joint distribution of the predictors.

Here, for the DP process prior, we consider the stick-breaking representation of the DP for the in-
finite number of clusters. According to Sethuraman (1994), if G is assigned a DP prior with precision
m and base measure G0, the stick-breaking representation of G is

G =
∞∑

h=1

phδθh , ph = Vh

∏
l<h

(1 − Vl) , Vh ∼ Be (1,m) , θh ∼ G0,
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where δθ is a probability measure concentrated at θ and all Vh’s and θ’s are independent. Gibbs
sampling methods for stick-breaking priors are provided in many articles.

Ishwaran and James (2001) presented two Gibbs sampling methods for fitting Bayesian nonpara-
metric hierarchical models based on stick-breaking priors. The first type of Gibbs sampler, referred to
as a Pólya urn Gibbs sampler, applies to stick-breaking priors with a known Pólya urn characteriza-
tion, that are priors with an explicit and simple prediction rule. The second method, the blocked Gibbs
sampler, works by directly sampling values from the posterior of the random measure. They argue
that the blocked Gibbs sampler avoids marginalizing over the prior and allows the prior to be directly
involved in the Gibbs sampling scheme. This allows direct sampling of the nonparametric posterior
and leads to several computational and inferential advantages. Thus, in this paper, we consider the
blocked Gibbs sampler of Ishwaran and James (2001) based on the stick-breaking representation of
the DP as a prior on the clustering structure.

For the index of cluster, we consider an indicator variable of mixture Zi for observation i, i =
1, . . . , n. Then we re-express the model structure with the stick-breaking prior as

Yi|Xi,Zi, {θh}∞h=1 ∼ f
(
yi|Xi, θZi

)
,

Zi ∼
∞∑

h=1

phδh, (2.3)

ph = Vh

∏
l<h

(1 − Vl) ,

where Vh ∼ Be (1,m).

2.2. Basic identity

For the density function of yi in cluster k, we consider a Laplace distribution such that

f (yi|Xi, θk) =
1

2bk
exp

−
∣∣∣yi − Xiβk

∣∣∣
bk

 , (2.4)

where θk =
(
βk, bk

)
, βk is a regression parameter of the location parameter, and bk is a scale parameter.

The Laplace (double-exponential) distribution is a scale mixture of a normal distribution with an
exponential mixing density (Andrews and Mallows, 1974), that is

a
2

exp(−a|z|) =
∫ ∞

0

1
√

2πτ
exp

(
− z2

2τ

)
a2

2
exp

(
−a2

2
τ

)
dτ. (2.5)

Details of the equation and the proof have been discussed by Kyung et al. (2010). The main idea is to
introduce appropriate latent parameters. We develop the posterior distribution of Laplace distribution
parameters based on the equation in (2.5).

3. Sampling scheme

Ishwaran and Zarepour (2000) proposed a truncated approximation with N < ∞ to the DPM model
in (2.3) to improve the mixing of its Gibbs sampler. They argued that the key to work with random
probability measures of a truncated approximation is that it allows us to perform blocked updates for
the probability p1, . . . , pN and Z1, . . . ,ZN in (2.3). This then will result in a rapid mixing Markov
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chain that permits a direct inference for the posterior of the random probability measure G. All the
detailed derivation of the posterior distributions of Z and p and how to determine the truncation level
N can be found therein. Therefore, we consider a truncated approximation with N instead of ∞
mixing properties for the hierarchical structure of a Laplace random partition model in (2.3) with the
probability density function of (2.4).

For the regression parameters in cluster h, we consider the following priors:

βh ∼ MVNp (0, chI) and b2
h ∼ π

(
b2

h

)
∝ 1

b2
h

.

We begin with construction of a cluster structure and discuss how to estimate parameters in each
cluster.

Step 1. Cluster structure

With an appropriate approximation level of N, the subject-specific latent variable Zi in (2.3)
follows a discrete distribution with p = (p1, . . . , pN). Then, the conditional posterior distribu-
tion of Zi updated with observed yi is specified as

P
(
Zi = h|yi,p, {θl}Nl=1

)
=

ph f (yi|Xi, θh)∑N
l=1 pl f (yi|Xi, θl)

.

Upon sampling Z, the index set S h = {i; Zi = h} for h = 1, . . . ,N is also updated, inducing
the cluster structure among n genes. Letting nh = n (S h) be the cardinality of S h, (N − 1) beta
random variables, V1, . . . ,VN−1 can be updated by sampling from

Vh|α,Z ∼ Beta

1 + nh, m +
N∑

j=h+1

n j

 ,
for h = 1, . . . ,N − 1, and it is set that VN = 1 to ensure

∑N
h=1 ph = 1 with ph = Vh

∏
l<h(1−Vl)

for h = 1, . . . ,N.

Step 2. Model parameters

Given the cluster indices of each observation Z, the joint posterior distribution of cluster h
based on a hierarchical model with priors can be written as

π
(
βh, τh, b2

h

∣∣∣∣X,Z, by
)

∝
∏

Zi=h

(2πτi)−
1
2 exp

{
− 1

2τi

(
yi − Xiβh

)2
}

1
2b2

h

exp
− τi

2b2
h

 1
b2

h

exp
(
− 1

2ch
β′hβh

)
,

where τh = {τi : Zi = h} is a vector variances of observations in cluster h. Thus the full condi-
tional posterior distribution of model parameters can be obtained based on data augmentation
methods. For cluster h, the full conditional posterior distributions of parameters are

ti ≡
bh

∣∣∣yi − Xiβh

∣∣∣
τi

∣∣∣∣∣∣∣ Zi =



βh|τh, b2
h,X,Z, y ∼ MVNp

(
β∗h, Σβ∗h

)
h,βh, b

2
h,X,Z, y ∼ inverseGaussian

µi = 1, λi =

∣∣∣yi − Xiβh

∣∣∣
bh


b2

h|βh, τh,X,Z, y ∼ IG

nh,
1
2

∑
Zi=1

τi

 ,
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where

β∗h =

∑
Zi=h

1
τi

X′iXi +
1
ch

I

−1 ∑
Zi=h

1
τi

X′iyi

 , Σβ∗h =

∑
Zi=h

1
τi

X′iXi +
1
ch

I

−1

,

and nh = |S h| is the number of observations in cluster h. Details of derivation are in Appendix
A.

Step 3. Post process

Mixture models suffer from a well-known “label-switching” problem, which arises due to
the identical likelihood for any permutation of component-specific parameters. Inheriting
the properties of the adjusted Rand index, Fritsch and Ickstadt (2009) proposed the posterior
expected adjusted Rand index and showed the outperformance of the posterior expected ad-
justed Rand index over competing methods such as maximum a posteriori (MAP) estimate.
In addition, implementing the method is easy with R package mcclust. Details are in Fritsch
and Ickstadt (2009) and references therein.

4. Application

We conduct simulation studies to evaluate our proposed random partition model with LAD regression.
We implement the full conditional Gibbs sampler using DP prior on the cluster structure to analyze
the energy efficiency data set. As a competing model, we consider the normal mixture model (NMM)
of DP prior. Also, to compare the proposed method, we consider the model-based clustering of
Fraley and Raftery (2002) based on the NMM, for which the R package mclust (Fraley et al., 2012) is
available. Mixture models of normal distributions with various covariance structures are fitted via the
EM algorithm. The NMM was implemented with no specific prior distribution, which was the default
setting provided by the R package mclust.

For the simulation studies, we considered the maximum truncation level is 30 (N = 30) to perform
blocked updates for the probability p1, . . . , pN and Z1, . . . ,ZN in (2.3). An MCMC algorithm also ran
for 50,000 iterations with a burn-in period of 20,000. We collected every 10th sampler among 30,000
iterations to prevent the correlation of Gibbs. With 3,000 Gibbs sampler, we conducted the post
process. With the unknown number of clusters, for the Gibbs sampling, we consider the posterior
expected adjusted Rand index of Fritsch and Ickstadt (2009) in R package mcclust to choose the
optimal number of clusters and the indices of clusters. For the model-based clustering, the BIC is
used to identify the optimal number of clusters and covariance structure for a given data set, and a
MAP estimate is obtained.

4.1. Simulation study I

We first evaluated the performance of our method with simulated data, where the classes are known.
We simulated data according to the following regression models with n = 300 and k = 3

Yih = Xiβh + ϵih,

where i = 1, . . . , n and h = 1, . . . , k. We considered three clusters (k = 3) and the cluster indicator Zi

follows

Zi ∼ Multinomial (1,p = (0.3, 0.3, 0.4)) .



464 Minjung Kyung

For regression, we generated two exploratory variables, X1 from N(−3, 0.01) and X2 from N(2, 0.01).
We set a design matrix as X = (1, X1, X2). We fix the regression parameters in each cluster as:

Cluster 1 : β1 = (0, 0, 2), Cluster 2 : β2 = (−1, 0,−2), Cluster 3 : β3 = (1, 1, 0).

For various situation of data structure, we considered three different sets of errors for each clusters:

Set 1. ϵi1 ∼ N(0, 0.5), ϵi2 ∼ N(0, 0.2) and ϵi3 ∼ N(0, 0.1)

Set 2. ϵi1 ∼ Laplace(0,
√

0.5), ϵi2 ∼ Laplace(0,
√

0.2) and ϵi3 ∼ Laplace(0,
√

0.1)

Set 3. ϵih ∼ t (df = 5) for i = 1, . . . , n and h = 1, . . . , k.

For normally distributed error data (Set 1), means of cluster Xβh are set to be well separable such
that µ1 = Xβ1 ≈ 4, µ2 = Xβ2 ≈ −5, and µ3 = Xβ3 ≈ −2, and the true variances are small numerically
as σ2

1 = 0.5, σ2
2 = 0.2, and σ2

3 = 0.1.
For the model-based normal mixture, to identify the optimal number of clusters and covariance

structure for a given data set, the BIC is considered and the BIC plots of each data sets for the number
of clusters are in Figure C.1 in Appendix C. By the R package mclust, the mixture models of normal
distributions with various covariance structures are considered via the EM algorithm and the BIC are
computed. In our simulation studies, for all data sets, the BIC has chosen only one cluster with most
of multivariate covariance structures except “spherical, equal volume (EII)” and “spherical, varying
volume (VII)” structures. It might be reason for large scale parameter values of each data sets for
each cluster, or the limitation of the BIC computation based on the EM algorithm. We already know
the number of clusters as 3 for each sets of data. Therefore, for the comparison, we consider the EM
based MAP estimation of 3 clusters with spherical and varying volume (VII) covariance.

Based on the posterior mean and 95% credible interval, the proposed model correctly estimates
the mean functions, but it fails to capture the linear trends correctly. However, the estimated µh’s are
numerically close to the true values. Based on the post process, we compute the adjusted Rand index
between the Laplace regression partition model and the true cluster index of the same objects, and
Zi’s from our proposed model are perfectly matched to the true indices of clusters. NMM also shows
similar results to the proposed model. The estimated curves with true curves are in Figure 1. Both the
Laplace regression partition model and the normal regression mixture model estimated the true mean
curve adequately. The EM based Gaussian mixture models also estimate the mean of each clusters
close to the true values and the computed adjusted Rand index shows that the measured classification
index of the EM perfectly matched to true indices of clusters.

Table 1 shows the estimated scale parameters and 95% credible intervals of both Laplace partition
models and NMMs. Estimated scale parameters of the proposed Laplace regression partition model
are b̂1 = 0.49(0.34.0.98), b̂2 = 0.37(0.27, 0.95), and b̂3 = 0.24(0.17, 0.93), and these are numerically
similar to the standard deviation of true models for each clusters. The estimated standard deviation
of the NMM are σ̂1 = 0.58(0.47, 0.84), σ̂2 = 0.44(0.36, 0.58), and σ̂3 = 0.30(0.25, 0.54) of cluster
1, 2, and 3. Based on the 95% credible intervals of the proposed Laplace regression partition model,
we observe that the posterior distributions of scale parameters are skewed to right and have a wider
credible interval than NMM. The posterior distributions of the standard deviations are symmetric and
have shorter credible intervals. The estimated standard deviation of the EM NMM are σ̂1 = 0.28,
σ̂2 = 0.22, and σ̂3 = 0.15, which are almost half values of the estimated mean standard deviation of
the Gibbs normal mixtures.

For Laplace random partition data (Set 2), means of cluster Xβh are also set to be well separable
such that µ1 = Xβ1 ≈ 4, µ2 = Xβ2 ≈ −5, and µ3 = Xβ3 ≈ −2, but the true scale parameters are not



Laplace random partition models 465
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Figure 1: Histogram of generated data from normal mixture model (Set 1). The cluster-specific mean curves
(black solid lines) with two estimated curves by the Dirichlet process normal mixture model (dotted blue lines),
the model-based normal mixture EM model (dot-dashed magenta lines), and the Laplace regression random

partition model (red dot lines) are on histogram.

Table 1: Posterior median and 95% CI for cluster-specific residual scale parameter σh or bh of NMM and LPM,
and MAP estimate from the model-based clustering of EM

Model Cluster Truth NMM LPM MAPMean 95% CI Mean 95% CI
1 0.71 0.58 (0.47, 0.84) 0.49 (0.34, 0.98) 0.28

Normal 2 0.45 0.44 (0.36, 0.58) 0.37 (0.27, 0.95) 0.22
3 0.32 0.30 (0.25, 0.54) 0.24 (0.17, 0.93) 0.15
1 0.71 0.73 (0.45, 3.27) 0.49 (0.26, 1.00) 0.43
2 0.45 0.41 (0.19, 2.46) 0.47 (0.18, 1.67) 0.36

Laplace 3 0.32 0.60 (0.20, 5.38) 0.85 (0.11, 2.71) 0.17
4 - 0.36 (0.19, 8.08) 0.63 (0.20, 2.35)
5 - - - 0.21 (0.06, 1.41)
1 1.67 0.84 (0.57, 11.80) 0.40 (0.25, 3.12) 0.73

t (df = 5) 2 1.67 2.75 (2.12, 25.80) 1.03 (0.61, 5.20) 0.66
3 1.67 - - 1.35 (0.57, 4.24) 0.30

CI = credible interval; NMM = normal mixture model; LPM = Laplace partition model; MAP = maximum a posteriori.

small numerically to be separable clusters clearly, b1 = 0.71, b2 = 0.45, and b3 = 0.32. Therefore,
there might be the grey zone (which is a subregion that is not separable clearly as different clusters).

The estimated number of cluster is 5 based on our proposed model and 4 based on the NMM.
Thus, the computed adjusted Rand index between the estimated Zi and the true index is 0.83 and 0.89
for our model and NMM, separately. The Laplace regression random partition model seems to detect
partition sensitively for the grey zone between partition 2 and 3, compared to the normal regression
mixture model. Figure 2 shows the estimated curves with true curves. Regardless of the estimated
number of clusters, the estimated curves are quite close to the true curve for both Laplace and normal
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Figure 2: Histogram of generated data from Laplace random partition model (Set 2). The cluster-specific mean
curves (black solid lines) with two estimated curves by the normal mixture model (dotted blue lines) and the

Laplace regression random partition model (red dot lines) are on histogram.

regression models.
The proposed model correctly estimates the mean functions based on the posterior mean and

95% credible interval; however, it fails to capture the linear trends correctly and similar results of
the NMM. Table 1 shows that the estimated scale parameters and 95% credible intervals of the pro-
posed Laplace regression partition model are b̂1 = 0.49(0.26, 1.00), b̂2 = 0.47(0.18, 1.67), b̂3 =

0.85(0.11, 2.71), b̂4 = 0.63(0.20, 2.35), and b̂5 = 0.21(0.06, 1.41), and the estimated median standard
deviation of the NMM are σ̂1 = 0.73(0.45, 3.27), σ̂2 = 0.41(0.19, 2.46), σ̂3 = 0.60(0.20, 5.38), and
σ̂4 = 0.36(0.19, 8.08). For the scale parameters, credible intervals of standard deviations of normal
regression mixture models are quite wider compared to the credible intervals of scale parameters of
Laplace regression partition models. The posterior distributions of the standard deviations are also
highly skewed right. Data set is generated from the Laplace random partition models; however, it
might be a reason for an unstable estimation of the standard deviation in NMMs.

With EM algorithm of fixed 3 clusters, the estimated scale parameters are σ̂1 = 0.43, σ̂2 = 0.36,
and σ̂3 = 0.17. There might exist underestimation problem even with known number of clusters
for the EM. The computed adjusted Rand index between the estimated Zi and the true index is 0.91.
As discussed above, it might be the reason for data generation setting and the forced separation to
3 clusters. We also observe that the estimated curves are quite close to the true curve based on the
estimated curve in Figure 2.

For t (df = 5) (Set 3), means of cluster Xβh are also set to be well separable such that µ1 = Xβ1 ≈ 4,
µ2 = Xβ2 ≈ −5, and µ3 = Xβ3 ≈ −2, but with df = 5, t-distribution has heavy tails. Therefore, the
generated data set might not be well separable.

The estimated number of cluster is 3 based on our proposed model and 2 based on the NMM.
Therefore, the computed adjusted Rand index between the estimated Zi and the true index is 0.50 and
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Figure 3: Histogram of generated data from t mixture model of df = 5 (Set 3). The cluster-specific mean curves
(black solid lines) with two estimated curves by the normal mixture model (dotted blue lines) and the Laplace

regression random partition model (red dot lines) are on histogram.

0.47 for our model and NMM, separately. The Laplace regression random partition model seems to
detect partition sensitively compared to the normal regression mixture model. However, the computed
adjusted Rando index is 0.70 for the EM Gaussian mixture model. For the estimated mean of each
cluster µh, we observe that the NMM combine cluster 2 and 3, then estimates the mean of cluster 1
as around 4 µ̂1 ≈ 4 and of cluster 2 as around −4 µ̂2 ≈ −4, the mean of the true means of cluster
2 and 3. However, the Laplace random partition model estimate the mean of cluster 1 as around 4
µ̂1 ≈ 4; however, cluster 2 is around −3.5 µ̂2 ≈ −3.5 and around 1.3 for cluster 3 µ̂3 ≈ 1.3. From
the histogram of generated data in Figure 3, we observe that there is a group of data between 0 and
3, and the distribution of negative valued data are skewed left. This distribution might be because the
true distribution seems to have two clusters with a normal regression mixture model that estimates
the number of parameters as 2. The proposed Laplace random partition model also seems to partition
a subset of data between 0 and 3 as a different cluster due to the distribution of generated data.
However, with fixed 3 clusters, the estimated curve of the EM on the histogram seems not to consider
the distribution of data at all even though the computed adjusted Rando index is 0.70. Thus, if our
goal is density estimation, we should better use the mixture models with Gibbs sampling, but the EM
will provide more hidden information if our goal is the detection of the cluster indices.

The proposed model and the NMM correctly estimates the mean functions based on the poste-
rior mean and 95% credible interval; however, it fails to capture the linear trends correctly. Figure
3 includes the estimated curves with true curves. With heavy tailed mixture, we observe that any
method might be unable to capture the true clustering structure in data. Estimated scale parame-
ters and 95% credible intervals in Table 1 of the proposed Laplace regression partition model are
b̂1 = 0.40(0.25, 3.12), b̂2 = 1.03(0.61, 5.20), and b̂3 = 1.35(0.58, 4.24). However, the estimated stan-
dard deviations of the NMM σ̂1 = 0.84(0.57, 11.80) and σ̂2 = 2.75(2.12, 25.80) are unstable and
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Table 2: Computed the adjusted Rand index between partitions and the true indices of clusters of the same
objects for NMM and LPM, and MAP estimate from the model-based clustering model of EM

Set 4 Set 5
NMM LPM MAP NMM LPM MAP

Rand index 0.467 0.434 0.00 0.427 0.401 0.102

NMM = normal mixture model; LPM = Laplace partition model; MAP = maximum a posteriori.

highly skewed. True values are included in the credible intervals of scale parameters of Laplace par-
tition models; however, the true values are not included in the credible intervals of NMM because it
estimated the number of cluster as 2 with large value of standard deviation. The estimated standard
deviations of the EM are σ̂1 = 0.73, σ̂2 = 0.66, and σ̂3 = 30, and these are underestimated.

4.2. Simulation study II

For more complicated structure of the data generation process with clusters, we generated two more
data sets to evaluate our proposed random partition model with LAD regression. We simulated data
according to the following regression models with n = 400 and k = 2

Yih = Xiβh + ϵih

where i = 1, . . . , n and h = 1, . . . , k. We considered two clusters (k = 2) and the cluster indicator Zi

follows

Zi ∼ Multinomial (1, p = (0.6, 0.4)) .

For regression, we generated two exploratory variables, X1 from N(0, 1) and X2 from N(0, 1) and set
a design matrix as X = (1, X1, X2). The fixed regression parameters in each clusters are:

Cluster 1 : β1 = (0, 1, 1), Cluster 2 : β2 = (0,−1,−1).

We mimic the 5th and 6th settings of the simulation studies in Song et al. (2014) and these are;

Set 4. ϵih ∼ 0.95N(0, 1) + 0.05N(0, 25) for h = 1, 2

Set 5. ϵih ∼ N(0, 1) with 5

The error in Set 4 is a mixture of two normal distributions and this complexity causes the generated
data to appear to have at least four clusters and not easy to partition. This would produce 5% data
likely to be low leverage outliers and unsmooth curved data. Based on the posterior mean and 95%
credible interval of parameters in each clusters, we observe that the estimate fails to capture the linear
trends correctly.

The true number of cluster is 2, and the NMM of Gibbs choose 2 clusters and the Laplace partition
model of Gibbs have chosen 5 clusters based on the posterior expected adjusted Rand index. The BIC
of the EM model based-cluster consider 2 to 3 clusters with “spherical, varying volume (VII)” variance
structure, but we choose to have 2 clusters. Based on the chosen number of clusters of models, the
computed adjusted Rand index between clusterings/partitions and the true indices of the clusters are
in Table 2. We observe that the computed value of adjusted Rand index with true indices of the Gibbs
NMM is slightly larger than that of the Gibbs Laplace partition model numerically. However, the
EM model-based model seems not to detect true clustering indices correctly compared to other Gibbs
models.
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Figure 4: Estimated curves based on normal mixture model (bold black line) and on Laplace random partition
model (bold blue line) with 95% credible intervals of normal mixture (dotted black lines) and of Laplace random

partition model (dotted blue lines) for Set 4 data at selected data points.

Figure 4 shows the estimated curves of NMM and LPM with 95% credible intervals on selected
data. Based on the 95% credible intervals, we observe that the 95% credible interval of LPM is wider
than NMM as discussed in the previous section. The estimated curves do not seem to adequately
estimate the true curve at each data point due to the complexity of data generation setting. However,
the true number of clusters is 2, and the estimated curves of NMM and LPM seem to capture the true
number of clusters around the data points that can be easily partitioned.

In the generating setting of the 5th data (Set 5), 5% of the observations are replicated serving as
high leverage outliers, used to check the robustness of estimation procedures against the high leverage
outliers. The BIC of the EM model based-cluster consider 2 to 3 clusters “spherical, equal volume
(EII)” variance structure; however, we choose to have 3 clusters because of the 5% high leverage
outliers. The NMM and the Laplace partition model of Gibbs choose 4 clusters based on the posterior
expected adjusted Rand index. From the computed adjusted Rand index in Table 2, we observe that
the computed value of adjusted Rand index of the Gibbs normal is a little larger than it of the Gibbs
Laplace partition model. It is unexpected that our proposed method performs no better than the Gibbs
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Figure 5: Estimated curves based on normal mixture model (bold black line) and on Laplace random partition
model (bold blue line) with 95% credible intervals of normal mixture (dotted black lines) and of Laplace random

partition model (dotted blue lines) for Set 5 data at selected data points.

NMM. We observe that the estimated curve of the Gibbs normal mixture does not capture the true
curve correctly from the estimated curves in Figure 5. However, the 95% credible interval of the
proposed Gibbs Laplace partition model seems to adequately estimate for the hidden structure of the
data with high leverage outliers, even though the 95% credible interval is wider.

4.3. Energy efficient data analysis

The energy efficient dataset was created and processed by Tsanas and Xifara (2012) using 12 different
building shapes simulated in Ecotect. The buildings differ with respect to glazing area, glazing area
distribution, and orientation, amongst other parameters. They originally simulate various settings as
functions of the afore-mentioned characteristics to obtain 768 building shapes and the dataset com-
prises 768 samples and 8 features, aiming to predict two real valued responses. Two responses are
“Heating Load” (Y1) and “Cooling Load” (Y2), and eight attributes are relative compactness (X1), sur-
face area (X2), wall area (X3), roof area (X4), overall height (X5), orientation (X6), glazing area (X7),
and glazing area distribution (X8). Correlations between explanatory variables are very strong among



Laplace random partition models 471

Heating Load of Energy Efficiency

heating load

D
e
n
s
it
y

10 20 30 40

0
.0

0
0
.0

2
0
.0

4
0
.0

6
0
.0

8
0
.1

0
0
.1

2

kernel estimated density

Cooling Load of Energy Efficiency

cooling load

D
e
n
s
it
y

10 20 30 40 50

0
.0

0
0
.0

2
0
.0

4
0
.0

6
0
.0

8
0
.1

0

kernel estimated density

Figure 6: Histograms of heating load and cooling load with estimated curve of responses based on kernel method.

X1, X2, X4, and X5; however, there is no relationship with X6, X7, and X8. In addition, there exist mild
correlation between X3 and (X1, X2, X4, X5), and between X7 and X8.

Tsanas and Xifara (2012) investigated the association strength of each input variable with each
of the output variables using a variety of classical and non-parametrical statistical analysis tools to
identify the most strongly related input variables. They compared a linear regression approach and
random forests to estimate heating load (HL) and cooling load (CL). Tsanas and Xifara did not con-
sidered standardization and intercept in the model for the linear regression and random forest models.
Tsanas and Xifara concluded that based on the random forest, X7 (glazing area) is the most important
predictor for both HL and CL and similar interpretation for a regression model. However, X7 variable
varies from 0 to 0.4 and the observed X2 variable is in (514.5, 808.5). It might be a reason why the
estimated impact of X7 is larger than other variables.

We instead consider a normal regression mixture model and a Laplace regression random partition
model for HL and CL because a simple linear regression is inadequate to explain the relationship of
input variables to output variable. Figure 6 includes histograms of HL and CL with estimated density
based on Gaussian kernels. We observe from histograms that the HL might be able to explained with
mixture of few normal distributions, and the CL can be explained with one normal distribution with
small variance and one normal distribution with large variance.

Estimated cluster-specific parameters of normal linear regression mixture model and Laplace lin-
ear regression random partition model are in Table B.2 in Appendix B. The estimated number of
clusters of NMM is 6 and of Laplace partition model is 2. For NMM, cluster 1 is specified with posi-
tive parameters of X5 and X8, cluster 2 is with no input variables, cluster 3 is with negative parameter
of X1 and positive parameters of X5 and X7, cluster 4 is very similar with cluster 3, cluster 5 is positive
parameters of X5 and X7, and cluster 6 is with X7. Tsanas and Xifara (2012) explained that X7 (glazing
area) is the most important predictor for HL, and it is in NMM of cluster 3 and 4. However, the impact
of X7 is the same as X5 (orientation) in cluster 5. There are also clusters which do not detect X7 as an
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(a) Estimated curves of Heating load on selected data points
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(b) Estimated curves of Cooling load on selected data points

Figure 7: Estimated curves based on normal mixture model (bold black line) and on Laplace random partition
model (bold blue line) with 95% credible intervals of normal mixture (dotted black lines) and of Laplace random

partition model (dotted blue lines) for heating and cooling load at selected data points.

impact input, and 95% credible intervals are significantly skewed left. With the number observations
in each clusters, we observe that most of HL can be explained with X5 and X7.

The estimated number of clusters of Laplace random partition model is 2, and cluster 1 is specified
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with positive parameters of X5 and X7 and cluster 2 is with positive parameter of X7 only. We also
observed that the X7 input variable is the most important variable to explain HL. Even though the
observed values of X7 is smaller than other variables, in cluster 1, we observe that the 95% credible
interval is not wide to suspect the impact of the small observed values. We select few of data points
and plot curves of HL and CL in Figure 5 that compare the estimated curves of both the NMM and
Laplace random partition model. The estimated curves of selected NMM data points show many
bumps compared to the estimated curves of Laplace random partition model due to the estimated
number of clusters and cluster-specific parameter estimation. The estimated curves of HL is in the
upper part of Figure 7.

For the Cooling Load, estimated cluster-specific parameters of the normal linear regression mix-
ture model and Laplace linear regression random partition model are in Table B.1 in Appendix B.
The estimated number of clusters of NMM is 4 and of Laplace partition model is 2. For Laplace
random partition model, cluster structure on CL is similar and like clusters on HL. For NMM, cluster
1 is specified with X5, cluster 2 and 4 are with X5 and X7, but cluster 3 is with no significant input
variables. The estimated curves of the normal mixture and Laplace partition models on selected data
points are in Figure 7.

Unlike the conclusion of Tsanas and Xifara (2012), we observe that X5 (orientation) is also an
important variable to explain HL and CL with X7 (glazing area). Tsanas and Xifara (2012) argued
that the most important variable (glazing area) is not the most correlated with either output variable
and other input variables. It can also be intuitively understood that the glazing area is of paramount
significant to determine the energy performance of buildings. However, we argue that there are vari-
ous cluster structures to explain HL and CL with significant input variables in each cluster. Therefore,
various linear combinations of orientation and glazing area are important elements to determine the
energy performance of buildings because the amount of glazing and the orientation of buildings de-
termine that the heat absorbed in a building due to the sun as well as a similar orientation and glazing
is a source of heat leakage from the building to the environment.

5. Discussion

We have developed a random partition procedure based on a DP prior with Laplace distribution. A
full Gibbs-sampling algorithm for the linear regression mixture model of the full conditional poste-
rior distribution with Laplace distribution is developed for an efficient MCMC posterior computation.
For the prior on the clustering structure, we consider a random partition model of the DP, because
the proposed model leads to a tractable, probability-based, objective function to identify good parti-
tions. For the full posterior distribution of the Laplace distribution, we consider the fact the Laplace
distribution is a scale mixture of a normal distribution with an exponential mixing density (Andrews
and Mallows, 1974). We also have applied a post process to posterior samples for parameters of the
proposed model to choose a single clustering estimate to compromise the “label-switching” problem
based on maximizing the posterior expected adjusted Rand index of Fritsch and Ickstadt (2009).

For the comparison of the proposed methods, we considered the model-based clustering, Gaussian
mixture model, based on the EM methods in our simulation studies. To choose the optimal number
of clusters, we considered the BIC values on each sets. However, in our simulation studies, strangely
for all data sets, the BIC has chosen only one cluster with most of multivariate covariance structures
except “spherical, equal volume (EII)” and “spherical, varying volume (VII)” structures. It might be
the reason of large scale parameter values of each sets of data for each clusters or the limitation of
the BIC computation based on the EM algorithm. In the simulation, we already know the number
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of clusters and we fixed the number of clusters as 3 that is the true number of clusters for the data
generation.

For the first set of simulations, we considered three different sets of error distributions, normal,
Laplace, and t with df = 5. Based on the posterior mean and 95% credible interval, the proposed
model and the NMM correctly estimates the mean functions, but it fails to capture the linear trends
correctly for all sets of generated data. With light tailed error such as Laplace distribution, for the
scale parameters, credible intervals of standard deviations of normal regression mixture models are
quite wider compared to the credible intervals of scale parameters of Laplace regression partition
models. The posterior distributions of the standard deviations are also highly skewed right. However,
with heavy tailed errors such as t distribution with df = 5, we observed that in the credible intervals
of scale parameters of Laplace partition models, true values are included, but in the credible intervals
of NMM, the true values are not included because it estimated the number of clusters smaller with a
large value of standard deviation than the true number of clusters.

The two data sets in the second simulation section were with the 5% low leverage outliers and
with the 5% high leverage outliers, respectively. The NMM and even the EM model based clustering
algorithm failed to capture the linear trends correctly in the proposed model; in addition, the estimated
curves were not on the generated data points correctly. However, for the data with 5% high leverage
outliers, the 95% credible interval of the proposed Gibbs Laplace partition model seems to adequately
estimate for the hidden structure of data with high leverage outliers, even though the 95% credible
interval is wider.

The EM NMM seems to underestimate the scale parameters of each clusters on each set of data
compared to other Gibbs methods. Also, with fixed number of clusters as the true number of clusters,
the estimated curve of the EM on the histogram seem not to consider the distribution of data with
heavy tailed error, but the indices of clusters based on the EM seem close to the true indices of clusters.
It is best use the mixture models with Gibbs sampling if our goal is density estimation; however, the
EM will provide more hidden information if our goal is the detection of the cluster indices.

We observe that X5 (orientation) is also an important variable to explain HL and CL with X7
(glazing area) in the energy performance data of buildings. The estimated numbers of clusters for HL
are 6 of NMM and 2 of Laplace random partition model; in addition, the estimated number of clusters
for CL are 4 of NMM and 2 of Laplace random partition model. We conclude that there are various
cluster structures to explain HL and CL with significant input variables in each cluster. Thus various
linear combinations of orientation and glazing area are important elements to determine the energy
performance of buildings, because the amount of glazing and the orientation of buildings determine
the heat absorbed in a building due to the sun; in addition, similarly orientation and glazing is a source
of heat leakage from the building to the environment.
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Appendix A: Posterior distribution of model parameters

The joint posterior distribution of parameters for cluster h in Section 3 is
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For the posterior distribution of βh,
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Therefore,
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For the posterior distribution of τi of τh = {τi|Zi = h},
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and

τi =
bh

∣∣∣yi − Xiβh

∣∣∣
ti

.

For the posterior distribution of b2
h,

π
(
b2

h|βh, τh,X,Z, y
)
∝

 1
b2

h

nh+1

exp
−∑

Zi=h τi

2b2
h

 .
Therefore,

b2
h|βh, τh,X,Z, y ∼ IG

nh,
1
2

∑
Zi=1

τi

 .
Appendix B: Parameter estimation

Table B.1: Posterior median and 95% credible interval of cluster-specific model parameters of NMM and LPM
for Heating load

Model Parameter Cluster
1 2 3

β1 0.29 (−1.89, 2.28) 0.23 (−1.81, 2.33) −2.20 (−4.01, −0.71)
β2 −0.01 (−0.83, 0.77) −0.02 (−0.83, 0.75) 0.00 (−0.78, 0.78)
β3 0.04 (−0.76, 0.86) 0.06 (−0.70, 0.87) 0.09 (−0.69, 0.88)
β4 −0.01 (−1.58, 1.63) −0.02 (−1.56, 1.59) −0.10 (−1.65, 1.49)

NMM β5 1.87 (1.46, 2.77) 2.01 (−0.41, 2.72) 1.21 (0.82, 2.47)
β6 −0.01 (−0.44, 0.24) −0.11 (−0.60, 0.41) −0.02 (−0.11, 0.06)
β7 0.22 (−1.45, 2.63) 0.67 (−1.41, 2.79) 10.33 (2.27, 11.27)
β8 2.01 (1.05, 2.98) 2.07 (−0.38, 3.44) −0.09 (−0.15, 2.16)
σ 0.07 (0.04, 2.14) 1.30 (0.35, 2.20) 0.38 (0.32, 1.05)
nh 20 22 116

Model Parameter Cluster
4 5 6

β1 −1.64 (−2.72, −0.33) −1.40 (−2.77, 0.07) −0.15 (−2.20, 1.71)
β2 0.01 (−0.84, 0.79) 0.02 (−0.79, 0.80) 0.07 (−0.71, 0.85)
β3 0.01 (−0.77, 0.86) 0.03 (−0.76, 0.83) −0.03 (−0.81, 0.76)
β4 −0.05 (−1.63, 1.64) −0.07 (−1.63, 1.53) 0.04 (−1.51, 1.60)

NMM β5 4.11 (2.97, 4.25) 3.10 (2.89, 3.27) −0.62(−1.46, 0.32)
β6 −0.01 (−0.10, 0.05) −0.03 (−0.16, 0.10) 0.00 (−0.23, 0.24)
β7 11.85 (2.88, 12.32) 3.47 (2.39, 4.40) 7.82 (5.09, 10.68)
β8 −0.05 (−0.09, 0.06) 0.00 (−0.10, 0.11) −0.11 (−0.29, 0.08)
σ 0.39 (0.35, 0.71) 0.65 (0.54, 0.79) 1.32 (1.05, 1.65)
nh 371 125 114

Model Parameter Cluster
1 2

β1 −1.77 (−6.69, 1.42) −1.38 (−3.30, 1.29)
β2 0.00 (−0.78, 0.76) −0.04 (−0.87, 0.75)
β3 0.04 (−0.74, 0.82) 0.13 (−0.88, 1.41)
β4 −0.04 (−1.58, 1.52) −0.10 (−1.74, 1.52)

LPM β5 3.68 (2.98, 4.28) 3.62 (−1.43, 3.93)
β6 −0.03 (−0.19, 0.13) −0.03 (−0.84, 0.91)
β7 11.63 (10.51, 14.38) 11.25 (0.88, 12.48)
β8 0.09 (−0.03, 0.27) 0.09 (−0.73, 0.95)
b 2.23 (1.76, 2.43) 2.21 (1.00, 2.47)
nh 729 39

NMM = normal mixture model; LPM = Laplace partition model.
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Table B.2: Posterior median and 95% credible interval of cluster-specific model parameters of NMM and LPM
for cooling load

Model Parameter Cluster
1 2 3 4

β1 0.10 (−1.54, 2.12) 1.13 (−0.58, 2.77) −0.21 (−2.24, 1.80) −1.36 (−3.42, 1.99)
β2 −0.01 (−0.80, 0.80) −0.01 (−0.83, 0.79) −0.04 (−0.84, 0.77) −0.01 (−0.79, 0.76)
β3 0.08 (−0.72, 0.88) 0.08 (−0.73, 0.89) 0.26 (−0.55, 1.06) 0.40 (−0.76, 0.85)
β4 −0.03 (−1.63, 1.56) −0.03 (−1.64, 1.60) −0.19 (−1.79, 1.42) −0.02 (−1.58, 1.54)

NMM β5 0.76 (0.20, 1.15) 1.90 (0.77, 2.17) 0.61 (−1.40, 1.43) 5.31 (0.35, 5.62)
β6 −0.04 (−0.15, 0.08) 0.14 (−0.07, 0.32) −0.06 (−0.57, 0.48) 0.04 (−0.12, 0.25)
β7 0.69 (−1.55, 2.52) 9.52 (1.52, 10.94) 1.81 (−0.36, 4.15) 9.95 (0.19, 10.86)
β8 1.10 (−0.00, 2.42) 0.03 (−0.10, 2.35) 0.35 (−0.16, 0.80) 0.01 (−0.07, 1.42)
σ 0.15 (0.08, 0.38) 1.65 (0.14, 1.86) 2.06 (1.42, 2.80) 0.76 (0.13, 1.98)
nh 10 309 49 400

Model Parameter Cluster
1 2

β1 −1.96 (−8.86, 0.82) −1.02 (−3.39, 1.60)
β2 −0.00 (−0.81, 0.80) −0.03 (−0.91, 0.84)
β3 0.03 (−0.77, 0.83) 0.11 (−0.93, 1.41)
β4 −0.02 (−1.62, 1.58) −0.10 (−1.84, 1.59)

LPM β5 3.80 (3.15, 5.05) 3.57 (−1.71, 4.16)
β6 0.12 (−0.13, 0.29) 0.13 (−0.83, 1.06)
β7 8.70 (7.37, 10.68) 7.74 (1.20, 9.51)
β8 0.06 (−0.11, 0.20) 0.05 (−0.86, 1.04)
b 2.37 (1.98, 2.60) 2.35 (1.00, 3.70)
nh 739 29

NMM = normal mixture model; LPM = Laplace partition model.

Appendix C: BIC plots of EM model based clustering
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Figure C.1: BIC plots of model based clustering based on the generated data from normal mixture model (Set
1), Laplace random partition model (Set 2), and t mixture model of df = 5 (Set 3). BIC = Bayesian information

criterion.
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