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Abstract: Hydrologic pattern under climate change has been paid attention to as one of the most important 

issues in hydrologic science group. Rainfall and runoff is a key element in the Earth’s hydrological cycle, and 

associated with many different aspects such as water supply, flood prevention and river restoration. In this 

regard, a main objective of this study is to evaluate design flood using simulation techniques which can 

consider a full spectrum of uncertainty. Here we utilize a weather state based stochastic multivariate model as 

conditional probability model for simulating the rainfall field. A major premise of this study is that large 

scale climatic patterns are a major driver of such persistent year to year changes in rainfall probabilities. 

Uncertainty analysis in estimating design flood is inevitably needed to examine reliability for the estimated 

results. With regard to this point, this study applies a Bayesian Markov Chain Monte Carlo scheme to the 

NWS-PC rainfall-runoff model that has been widely used, and a case study is performed in Soyang Dam 

watershed in Korea. A comprehensive discussion on design flood under climate change is provided. 
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1. Introduction 

 

Estimates of design flood frequencies are routinely required for engineering purposes. Design floods are 

required for planning and operation measures, structures design, as well as for safety and risk analysis of 

existing structures. Depending on the characteristics of the system, design floods are frequently provided as a 

peak discharge value or as a flood hydrograph corresponding to a prespecified return period (Kwon et al., 

2007).  

The streamflow data to support design purposes in South Korea are very limited. In addition, streamflow data 

from gauged regions compared to rainfall data is relatively insufficient to analyze flood frequency. Therefore, 

it is particularly important to utilize stochastic simulation for the floods and rain events in order to quantify 

the inherent uncertainty and to provide reliable estimates of the characteristic frequencies (Kwon et al., 2007). 

In this study we propose to derive the flood frequency curves based on weather state based multisite rainfall 

generation scheme and Bayesian continuous rainfall-runoff. Two novel approaches allow us to consider a full 

spectrum of uncertainties from input data to parameter estimation in the models. 

The proposed methodology could be viewed as an alternative or supplement of the traditional approaches in 

order to confidently provide flood-frequency estimates. The advantage of derived distribution technique is 

that one can account all the aspects of uncertainties in the hydrologic variables. By applying this approach to 

the rainfall-runoff models, the return periods of simulated floods can be empirically derived.  

 

2. Methodology 

 



2.1 Weather State Based Multisite Rainfall Generation Model (WSMR) 

Precipitation is an important component for water resources systems, and daily rainfall series are being used 

as a main input in hydrologic models. Stochastically generated daily rainfall is usually used to assess water 

resources systems. Although numerous studies literature (Rajagopalan et al., 1996; Sharma and Lall, 1999) 

for daily rainfall generation at a single site were researched in the hydrological and climate literature, keen 

attention has been paid to the spatial dependence (Kwon et al., 2008). The spatial dependence at different sites 

in a watershed needs to be considered, and this issue is especially critical in simulating rainfall, which is 

represented by the variability in space and time.  

Markov chains have been a popular method for modeling daily precipitation occurrence. Typically a two-state 

(wet or dry), one-step model is used, and the state transition probabilities (e.g., transition from a wet day to a 

wet day, a wet day to a dry day) are estimated from the data. One problem with such a description is that the 

transition probabilities may vary over the year, i.e., the process of precipitation occurrence is nonstationally. 

There is an implicit assumption that the occurrence process is stationary over the period. This assumption 

may not be tenable.  

In this paper, we developed a multivariate weather state model which is relatively complex model considering 

weather pattern, nonstationrity and Markov statistics with the intention of providing a practical tool for the 

simulation of daily rainfall in Korea for use with hydrologic model. 

WSMR relate broad scale atmospheric circulation patterns to local rainfall by postulating weather states to act 

as a link between the two disparate scales. For instance, let },,{ 1 n
tt RR K=R  be a multivariate random 

vector giving precipitation amounts at a network of n sites. Let tS  be the weather state at time t and 

D
t R∈X be the vector of atmospheric measures at time t for Tt ≤≤1 .  
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2.2 Bayesian Rainfall-Runoff Model 

 

Rainfall-runoff models are widely used in understanding and quantifying inflows with the predicted 

precipitation from large scale climate models, and to provide information that can be used in water resources 

management. Calibration of rainfall-runoff models with respect to local observational data is used to improve 

model predictability. In the present study, a Shuffled Complex Evolution Metropolis (SCEM-UA) global 

optimization algorithm is used for optimization and uncertainty assessment of hydrologic model parameters 

in rainfall-runoff model. [Vrugt, et al., 2003c] combined the strengths of the Monte Carlo Markov Chain 

(MCMC) sampler with the concept of complex shuffling from SCE-UA to form an algorithm. The 

SCEM-UA has been successfully used for hydrologic applications such as rainfall-runoff model optimization, 

large scale streamflow simulation and streamflow forecasting [Feyen, et al., 2007; Vrugt, et al., 2003c; Vrugt, 

et al., 2006a]. The SCEM-UA algorithm is similar to the SCE-UA global optimization method [Duan, et al., 

1992], but employs the Metropolis Hastings scheme [Metropolis, et al., 1953] [Hastings, 1970] instead of the 

Downhill Simplex method for population evolution. Hence, The SCEM-UA is able to simultaneously infer 

both the most likely parameter set and its underlying posterior probability distribution with a single 



optimization run [Vrugt, et al., 2003a; Vrugt, et al., 2006a; Vrugt, et al., 2006b].  

Among many rainfall-runoff models, this study employs the NWS-PC model as a hydrologic model. The 

NWS-PC, a PC version of NWSRFS (National Weather Service River Forecasting System) developed by 

National Weather Service, consist of soil moisture and flow routing components. The soil moisture 

component used the SAC-SMA (Sacramento Soil Moisture Account) model and flow routing component uses 

the kinematic wave and Muskingum methods in the HEC-1 mode (Tabios  et Ⅲ al, 1986).  

The SCEM-UA algorithm starts with an initial population of parameter sets randomly distributed throughout 

the given maximum and minimum parameter space. Then the model is run for each parameter set. Therefore, 

the posterior density )|( xθp  being the correct parameter set given knowledge from measurements x  for 

each parameter set is estimated from the model output and the measurements using a Bayesian inference 

scheme. An objective of Bayesian methods is to compute the posterior distribution of the desired variables, in 

this case the parameters of the annual maximum flood distribution. The posterior distribution )|( xθp  is 

given by Bayes Theorem as follow: 

)|()(
)|()(

)|()(

)(

)|()(
)( θθ

θθθ

θθθθ
θ x

x

x

x

x
x pp

dpp

pp

p

pp
p ×∝

×

×
=

×
=

∫
Θ

         (3) 

where θ  is the vector of parameters of the distribution to be fitted, Θ  is the space parameter, )|( xθp  

is the likelihood function, x  is the vector of observations and )(θp  is the prior distribution.  

The Gelman and Rubin convergence statistic [Gelman, et al., 2003] is calculated on the generated posterior 

densities to check whether convergence to a stationary target distribution has been achieved. For a more 

detailed explanation of the SCEM-UA algorithm, including a description of the statistical formulas, please 

refer to the article by [Vrugt, et al., 2003c]. The posterior distributions of thirteen parameters are updated and 

optimized in the Bayesian framework.  

 

RESULTS AND DISCUSSION  

 

The primary application we consider in this paper is the simulation of the daily rainfall of the Soyang Dam 

watershed from its 1987-2008 using observed daily rainfall. TpLLBIC kk log)(2 −Θ=  where )( kLL Θ  is 

the log- likelihood of the model with k  weather states, p  is the number of parameters and T  is the 

number of days of observed data used to train the model. The number of weather states in the model has a 

considerable influence on the performance of the model. A typical approach to the identification of the 

appropriate number of states is to minimize the Bayesian Information Criterion (BIC). The BIC is used here 

to select the number of weather states. Five weather states are selected for the each month in WSDM model. 

Figure 1 presents the frequency and amount of precipitation associated with each state for May.  
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Figure 1. The estimated percentage of amount and frequency of seasonal rainfall according to each state. 
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Figure 2. Model performance of the simulated daily rainfall 

 

Selected statistics of rainfall amount as simulated by the WSDM for the May are compared, and the 

performance in reproducing the amounts at 31-day sequences for May is plotted in Figures 2. For the May 

season, the correlations with the observed statistic are around 0.9. The model performance is quite good in 

simulating daily rainfall in terms of reproducing both high- and low-frequency.  

This study applies a Bayesian Markov Chain Monte Carlo scheme to the NWS-PC rainfall-runoff model that 

has been widely used. The NWS-PC model is calibrated against observed daily runoff, and thirteen 

parameters in the model are optimized as well as posterior distributions associated with each parameter are 

derived. The Bayesian Markov Chain Monte Carlo shows an improved result in terms of statistical 

performance measures and graphical examination. Figure 3 shows model calibration results using Bayesian 

Markov Chain Monte Carlo simulation from 1989 to 1999. Finally, the simulated daily rainfall series are fed 

into a NWC-PC rainfall-runoff model to generate discharge scenarios. Figure 4 shows the flood frequency 

curve with the theoretical line of log-normal distribution with probability paper. The proposed approach 

showed that the overall trend of design flood was similar to the design flood from traditional flood frequency 

analysis.  
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Figure 3. Model calibration results using Bayesian Markov Chain Monte Carlo simulation from 1989 to 1999. 

a) Comparison between observed flow and modeled flow, b) scatter plot. 
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Figure 4. Derived flood frequency curve fitted by lognormal distribution 
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