• Title/Summary/Keyword: Markov Process

Search Result 618, Processing Time 0.023 seconds

The Cluster Damage in a $extsc{k}th-Order$ Stationary Markov Chain

  • Yun, Seokhoon
    • Journal of the Korean Statistical Society
    • /
    • v.28 no.2
    • /
    • pp.235-251
    • /
    • 1999
  • In this paper we examine extremal behavior of a $textsc{k}$th-order stationary Markov chain {X\ulcorner} by considering excesses over a high level which typically appear in clusters. Excesses over a high level within a cluster define a cluster damage, i.e., a normalized sum of all excesses within a cluster, and all excesses define a damage point process. Under some distributional assumptions for {X\ulcorner}, we prove convergence in distribution of the cluster damage and obtain a representation for the limiting cluster damage distribution which is well suited for simulation. We also derive formulas for the mean and the variance of the limiting cluster damage distribution. These results guarantee a compound Poisson limit for the damage point process, provided that it is strongly mixing.

  • PDF

A Study on the Quality Estimation of Resistance Spot Welding Using Hidden Markov Model (은닉 마르코프 모델을 이용한 저항 점용접 품질 추정에 관한 연구)

  • 김경일;최재성
    • Journal of Welding and Joining
    • /
    • v.20 no.6
    • /
    • pp.45-45
    • /
    • 2002
  • This study is a middle report on the development of intelligent spot welding monitoring technology applicable to the production line. An intelligent algorithm has been developed to predict the quality of welding in real time. We examined whether it is effective or not through the In-Line and the Off-Line tests. The purpose of the present study is to provide a reliable solution which can prevent welding defects in production site. In this study, the process variables, which were monitored in the primary circuit of the welding, are used to estimate the weld quality by Hidden Markov Model(HMM). The primary dynamic resistance patterns are recognized and the quality is estimated in probability method during the welding. We expect that the algorithm proposed in the present study is feasible to the applied in the production sites for the purpose of in-process real time quality monitoring of spot welding.

A Study on the Quality Estimation of Resistance Spot Welding Using Hidden Markov Model (은닉 마르코프 모델을 이용한 저항 점용접 품질 추정에 관한 연구)

  • 김경일;최재성
    • Journal of Welding and Joining
    • /
    • v.20 no.6
    • /
    • pp.769-775
    • /
    • 2002
  • This study is a middle report on the development of intelligent spot welding monitoring technology applicable to the production line. An intelligent algorithm has been developed to predict the quality of welding in real time. We examined whether it is effective or not through the In-Line and the Off-Line tests. The purpose of the present study is to provide a reliable solution which can prevent welding defects in production site. In this study, the process variables, which were monitored in the primary circuit of the welding, are used to estimate the weld quality by Hidden Markov Model(HMM). The primary dynamic resistance patterns are recognized and the quality is estimated in probability method during the welding. We expect that the algorithm proposed in the present study is feasible to the applied in the production sites for the purpose of in-process real time quality monitoring of spot welding.

Development of Design Alternative Analysis Program Considering RAM Parameter and Cost (RAM 파라미터와 비용을 고려한 설계대안 분석 프로그램 개발)

  • Kim, Han-sol;Choi, Seong-Dae;Hur, Jang-wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.6
    • /
    • pp.1-8
    • /
    • 2019
  • Modern weapon systems are multifunctional, with capabilities for executing complex missions. However, they are required to be highly reliable, which increases their total cost of ownership. Because it is necessary to produce the best results within a limited budget, there is an increasing interest in development, acquisition, and maintenance costs. Consequently, there is a need for tools that calculate the lifecycle costs of weapons systems development to facilitate decision making. In this study, we propose a cost calculation function based on the Markov process simulator-a reliability, availability, and maintainability analysis tool developed by applying the Markov-Monte Carlo method-as an alternative to these requirements to facilitate decision-making in systems development.

Two-Dimensional POMDP-Based Opportunistic Spectrum Access in Time-Varying Environment with Fading Channels

  • Wang, Yumeng;Xu, Yuhua;Shen, Liang;Xu, Chenglong;Cheng, Yunpeng
    • Journal of Communications and Networks
    • /
    • v.16 no.2
    • /
    • pp.217-226
    • /
    • 2014
  • In this research, we study the problem of opportunistic spectrum access (OSA) in a time-varying environment with fading channels, where the channel state is characterized by both channel quality and the occupancy of primary users (PUs). First, a finite-state Markov channel model is introduced to represent a fading channel. Second, by probing channel quality and exploring the activities of PUs jointly, a two-dimensional partially observable Markov decision process framework is proposed for OSA. In addition, a greedy strategy is designed, where a secondary user selects a channel that has the best-expected data transmission rate to maximize the instantaneous reward in the current slot. Compared with the optimal strategy that considers future reward, the greedy strategy brings low complexity and relatively ideal performance. Meanwhile, the spectrum sensing error that causes the collision between a PU and a secondary user (SU) is also discussed. Furthermore, we analyze the multiuser situation in which the proposed single-user strategy is adopted by every SU compared with the previous one. By observing the simulation results, the proposed strategy attains a larger throughput than the previous works under various parameter configurations.

The Conformity Effect in Online Product Rating: The Pattern Recognition Approach

  • Kim, Hyung Jun;Kim, Songmi;Kim, Wonjoon
    • International Journal of Contents
    • /
    • v.13 no.4
    • /
    • pp.80-87
    • /
    • 2017
  • Since the advent of the Internet, and the development of smart devices, people have begun to spend more time in online platforms; this phenomenon has created a large number of online Words of Mouth (WOM) daily. Under these changes, one of the important aspects to consider is the conformity effect in online WOM; that is, whether an individual's own opinion would be influenced by the majority opinion of other people. This study, therefore, investigates whether there is the conformity effect in online product ratings for Amazon.com using the method called Markov Chain analysis. Markov Chain analysis considers the stochastic process that satisfies the Markov property, and we assume that the generation of online product ratings follows the process. Under the assumption that people are usually independent when they express their opinion in online platforms, we analyze the interdependency among rating sequences, and we find weak evidence that there exists the conformity effect in online product rating. This suggests that people who leave online product ratings consider others' opinions.

A State Feedback Controller Design for a Networked Control System with a Markov Delay (마코프 지연을 갖는 네트워크 제어 시스템을 위한 상태 궤환 제어기 설계)

  • Yang, Janghoon
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.6
    • /
    • pp.549-556
    • /
    • 2020
  • This paper proposes several suboptimal methods of designing a controller for a networked control system with state feedback where delay due to transmission error and transmission delay is modeled as a Markov process. A stability condition for a control system with Markov delay is found through an equivalent relationship that corresponding delay-dependent Lyapunov-Krasovskii functional has the same form of the Lyapunov function of an augmented control system. Several suboptimal methods of designing a controller from the stability condition are proposed to reduce complexity. A simple numerical experiment shows that a restricted subspace method which limits the search space of a matrix variable to a block diagonal form provides the best tradeoff between the complexity and performance.

A Multi-stage Markov Process Model to Evaluate the Performance of Priority Queues in Discrete-Event Simulation: A Case Study with a War Game Model (이산사건 시뮬레이션에서의 우선순위 큐 성능분석을 위한 다단계 마코브 프로세스 모델: 창조 모델에 대한 사례연구)

  • Yim, Dong-Soon
    • Journal of the Korea Society for Simulation
    • /
    • v.17 no.4
    • /
    • pp.61-69
    • /
    • 2008
  • In order to evaluate the performance of priority queues for future event list in discrete-event simulations, models representing patterns of enqueue and dequeue processes are required. The time complexities of diverse priority queue implementations can be compared using the performance models. This study aims at developing such performance models especially under the environment that a developed simulation model is used repeatedly for a long period. The developed performance model is based on multi-stage Markov process models; probabilistic patterns of enqueue and dequeue are considered by incorporating non-homogeneous transition probability. All necessary parameters in this performance model would be estimated by analyzing a results obtained by executing the simulation model. A case study with a war game simulation model shows how the parameters defined in muti-stage Markov process models are estimated.

  • PDF

Development of Statistical Downscaling Model Using Nonstationary Markov Chain (비정상성 Markov Chain Model을 이용한 통계학적 Downscaling 기법 개발)

  • Kwon, Hyun-Han;Kim, Byung-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.3
    • /
    • pp.213-225
    • /
    • 2009
  • A stationary Markov chain model is a stochastic process with the Markov property. Having the Markov property means that, given the present state, future states are independent of the past states. The Markov chain model has been widely used for water resources design as a main tool. A main assumption of the stationary Markov model is that statistical properties remain the same for all times. Hence, the stationary Markov chain model basically can not consider the changes of mean or variance. In this regard, a primary objective of this study is to develop a model which is able to make use of exogenous variables. The regression based link functions are employed to dynamically update model parameters given the exogenous variables, and the model parameters are estimated by canonical correlation analysis. The proposed model is applied to daily rainfall series at Seoul station having 46 years data from 1961 to 2006. The model shows a capability to reproduce daily and seasonal characteristics simultaneously. Therefore, the proposed model can be used as a short or mid-term prediction tool if elaborate GCM forecasts are used as a predictor. Also, the nonstationary Markov chain model can be applied to climate change studies if GCM based climate change scenarios are provided as inputs.

Evaluating the ANSS and ATS Values of the Multivariate EWMA Control Charts with Markov Chain Method

  • Chang, Duk-Joon
    • Journal of Integrative Natural Science
    • /
    • v.7 no.3
    • /
    • pp.200-207
    • /
    • 2014
  • Average number of samples to signal (ANSS) and average time to signal (ATS) are the most widely used criterion for comparing the efficiencies of the quality control charts. In this study the method of evaluating ANSS and ATS values of the multivariate exponentially weighted moving average (EWMA) control charts with Markov chain approach was presented when the production process is in control state or out of control state. Through numerical results, it is found that when the number of transient state r is less than 50, the calculated ANSS and ATS values are unstable; and ATS(r) tends to be stabilized when r is greater than 100; in addition, when the properties of multivariate EWMA control chart is evaluated using Markov chain method, the number of transient state r requires bigger values when the smoothing constatnt ${\lambda}$ becomes smaller.