Browse > Article
http://dx.doi.org/10.13160/ricns.2014.7.3.200

Evaluating the ANSS and ATS Values of the Multivariate EWMA Control Charts with Markov Chain Method  

Chang, Duk-Joon (Department of statistics, Changwon National University)
Publication Information
Journal of Integrative Natural Science / v.7, no.3, 2014 , pp. 200-207 More about this Journal
Abstract
Average number of samples to signal (ANSS) and average time to signal (ATS) are the most widely used criterion for comparing the efficiencies of the quality control charts. In this study the method of evaluating ANSS and ATS values of the multivariate exponentially weighted moving average (EWMA) control charts with Markov chain approach was presented when the production process is in control state or out of control state. Through numerical results, it is found that when the number of transient state r is less than 50, the calculated ANSS and ATS values are unstable; and ATS(r) tends to be stabilized when r is greater than 100; in addition, when the properties of multivariate EWMA control chart is evaluated using Markov chain method, the number of transient state r requires bigger values when the smoothing constatnt ${\lambda}$ becomes smaller.
Keywords
Asymptotic ATS; Control Chart; Markov Chain Method;
Citations & Related Records
연도 인용수 순위
  • Reference
1 E. S. Page, "Continuous inspection schemes", Biometrika, Vol. 45, pp. 110-114, 1954.
2 S. V. Cowder, "A simple method for studying run length distributions of exponentially weighted moving average control charts", Technometrics, Vol. 29, pp. 401-407, 1987.
3 D. Brook and D. A. Evans, "An approach to the probability distribution of CUSUM run length", Biometrika, Vol. 59, pp. 539-549, 1972.   DOI   ScienceOn
4 R. Q. Cui and M. R. Jr. Reynolds, "$\overline{X}$ charts with runs rules and variable sampling intervals", Commun. Stat.-Simul. C., Vol. 17, pp. 1073-1093, 1988.   DOI   ScienceOn
5 J. C. Arnold, "A markovian sampling policy applied to quality monitoring of streams", Biometrics, Vol. 26, pp. 739-747, 1970.   DOI   ScienceOn
6 M. R. Jr. Reynolds, "Optimal variable sampling interval control charts with variable sampling intervals", Sequential Anal., Vol. 8, pp. 361-379, 1989.   DOI
7 M. R. Jr. Reynolds, R. W. Amin, J. C. Arnold, and J. A Nachlas, "$\overline{X}$-charts with variable sampling intervals", Technometrics, Vol. 30, pp. 181-192, 1988.
8 H. Hotelling, "Multivariate quality control", techniques of statistical analysis, McGraw-Hill, New York, pp. 111-184, 1947.
9 C. A. Lowry, W. H. Woodall, C. W. Champ, and S. E. Ridgon, "A multivariate exponentially weighted moving average control chart", Technometrics, Vol. 34, pp. 46-53, 1992.   DOI   ScienceOn
10 J. J. Jr. Pignatiello and G. C. Runger, "Comparisons of multivariate CUSUM charts", J. Qual. Technol., Vol. 22, pp. 173-186, 1990.
11 J. J. Jr. Reynolds, "Markovian variable sSampling interval control charts", Technical Report 88-22, Virginia Polytechnic Institute and State University, Dept. of Statistics, 1988.
12 J. M. Lucas and R. B. Crosier, "Robust CUSUM : A robustness study for CUSUM quality control schemes", Commun. Stat.-Simul. C., Vol. 11, pp. 2669-2687, 1992.