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[요    약] 

이 논문에서는 마코프 프로세스로 모델링되는  전송 오류나 전송 지연이 있는 네트워크 제어 시스템을 위한  제어기 설계 방법

들을 제안한다. 마코프 지연을 갖는 제어 시스템을 위한 안정화 조건을 지연 의존적인 리아프노프-크라소프스키 범함수가 증가된 

제어 시스템의 리아프노프 함수와 동일한 형태를 갖는다는 점을 이용하여 찾는다. 유도된 안정화 조건으로부터 복잡도를 줄이기 

위한 수 개의 제어 설계기 방법을 제안한다. 모의 실험을 통하여 제안된 방법 중 행렬 변수의 탐색 공간을 블록 대각 행렬로 제한하

는 제한 부분 공간 방법이 성능과 복잡도 사이에서 가장 좋은 트레이드오프를 제공함을 확인되었다.

[Abstract]

This paper proposes several suboptimal methods of designing a controller for a networked control system with state feedback where 

delay due to transmission error and transmission delay is modeled as a Markov process. A stability condition for a control system with 

Markov delay is found through an equivalent relationship that corresponding delay-dependent Lyapunov-Krasovskii functional has the 

same form of the Lyapunov function of an augmented control system. Several suboptimal methods of designing a controller from the 

stability condition are proposed to reduce complexity. A simple numerical experiment shows that a restricted subspace method which limits 

the search space of a matrix variable to a block diagonal form provides the best tradeoff between the complexity and performance
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Ⅰ. Introduction 

Evolution of the internet and mobile technology has 

accelerated ubiquitous connections to various devices and 

systems. Widespread use of networks does not only result in 

much more information exchange but also a networked control of 

a variety of devices. With this trend, the importance of cyber 

physical systems (CPS) and associated control methods grows 

significantly [1]. The control of a group of drones and 

autonomous driving cars assisted by a network shows how a 

network controlled system will influence the future technology 

and industry significantly. A 5G network is also expected to 

provide seamless communication with a negligible delay to 

enable CPS more efficiently [2].

A system inter-connected by networks is bound to have delays 

due to the intrinsic nature of the network. Associated delay can be 

broadly classified into transmission delay and delay due to 

transmission errors. Controlling a networked controlled system 

(NCS) can be considered as controlling a system with delay,  

which has been studied over the past decades [3]-[5]. Stability 

condition or controller designs for a system with delay is often 

based on a Lyapunov method. Many existing studies have been 

exploiting two methods; the Lyapunov- Krasovskii method and 

the Lyapunov Razumikhin method, which often result in 

feasibility or optimization problem with bilinear matrix 

inequalities (BMIs) or linear matrix inequalities (LMIs).

Controller design in NCS depends on a delay model. ∞

stability was also studied for NCS with time varying delays in 

consideration of packet dropouts over both sensor-to-controller 

channel and controller-to-actuator channel [6] or varying network 

delay and random data packet dropout [7]. Random delay in a 

networked controlled system is often modeled as a Markov 

process in a discrete-time domain [8], since its operation depends 

on the communication protocol which has a fixed time slot or 

frame structure. An optimal linear quadratic gaussian (LQG) 

control for a system with delay due to erasures in a link between a 

sensor and a controller which is modeled as Markov process was 

shown to be the combination of linear quadratic regulator (LQR) 

state feedback and optimal estimator that estimates the state over 

a communication link [9]. The necessary and sufficient condition 

for the stochastic stability of a network control system with a 

bounded random delay was provided in [10]. An iterative 

algorithm for designing a controller to stabilize stochastically 

with state feedback was proposed to deal with uncertainty due to 

quantization error and communication delays modeled by a finite 

Markov process  [11]. The stabilization of a delayed system was 

extended to the stochastic stabilization of discrete-time 

Markovian jumping neural network, which resulted in a LMI 

approach based on Lyapunov-Krasovskii functional [12]. The 

sufficient condition for the stochastic stabilization of a system 

with Markov delay where some elements in a transition matrix 

were unknown was given as linear matrix inequality for a 

network with both the sensor to controller channel and controller 

to actuator channel [13],[14]. A stabilization condition for the 

boolean network with Markov delays of which states are either 0 

or 1 was formulated into a convex problem [15]. However, most 

of the existing approaches take system augmentation to be 

transformed to a system with no delay, which results in 

complexity growing significantly with the maximum delay.

In this paper, we consider a method for deterministic 

stabilization of a network controlled system where a delay is 

modeled as a Markov process while existing approaches address 

this problem stochastically [10]-[12]. A deterministic stabilization 

is likely to be more robust to modeling error in the transition 

probability of the Markov process. In addition, we proposed three 

different non-iterative methods of designing a state feedback 

controller for a system with the delay so that they can reduce the 

complexity of the existing approach. We exploit equivalent 

relationship between the stability condition for a system with 

delay based on Lyapunov Karsovskii functional and Lyapunov 

stability condition for a switched system [16]. A sufficient 

condition for a networked control system with Markov delay is 

presented from the equivalent stabilization of the switched 

system. The proposed deterministic stability condition for a 

system with Markov delay provides tradeoff between the 

conservatism from the most general stability condition in [16] and 

specificity from transition probabilities in stochastic stabilization 

[10]. Several methods to develop a stabilizing controller from the 

sufficient conditions are proposed. This paper is organized as 

follows. In section-2, we provide a considered system model and 

problem formulation. A sufficient condition for stabilizing a 

system with random delay deterministically is developed in a 

form of LMIs in section-3. Section-4 presents four different 

methods to design a stabilizing controller from the sufficient 

condition. The performance and processing time of the proposed 

design methods are compared through numerical experiments in 

section-5. Some concluding remarks are made in section-6.

Ⅱ. A System Model 

We consider a linear time invariant control system in a discrete 

time domain. It can be expressed as

                            (1)
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where ∈ × is a state vector, ∈ ×  is a control 

input,  and   are constant matrices. When the control input is 

determined from the state information of the system, which is 

available on network, transmission error can happen. In this case, 

two main approaches are either to use zero or the latest available 

information in synthesizing a control input. Since it is not known 

which one is better theoretically or experimentally for sure [17], 

we take the latter approach for simplicity. The corresponding 

networked control system of interest is shown in fig-1. At the k th 

time,  will be determined from delayed state information as 

follows.

                                                       (2)

where  is the delay at the th time, and  is a delay 

dependent controller gain.

Delay associated with transmission is assumed to take one time 

unit at least where associated delay in real time totally depends on 

the communication protocol. In many communication systems, a 

packet is transmitted in a frame of the fixed length, and 

transmission delay is fixed between point to point at least. 

However, when data transmission occurs over multi-nodes, it can 

take several time units. Since zero-order-hold approach is 

assumed,     when transmission error happens or 

transmission is delayed. When a new information is received 

successfully,  ≤ . Thus,  takes values in 

⋯  . Corresponding transition probability matrix 

 of delay between consecutive times can be defined using 

  Pr                                                        (3)

It is implicitly assumed that probability transition is stationary. 

Due to the assumption,    for   . In the subsequent 

sections, delay dependent condition considering the 

characteristics of the delay and corresponding stabilizing 

controller will be developed throughout this paper.

Ⅲ. Stability Condition

Deriving a stability condition from using Lyapunov-Krasovskii 

approach often results in complex conditions or conservative 

results due to associated inequalities even though it has been 

successfully exploited in dealing with stability conditions in 

control systems with various types of delays. To overcome these 

issues, we exploits the equivalence between a delay dependent 

Fig. 1. A system model.

Lyapunov-Krasovskii functional and the Lyapunov method for a  

switched system with state augmentation [16].

The corresponding switched system can be expressed as

 

 






 
 

⋯ 
⋯ ⋮

 ⋱
 ⋯

⋱ ⋮
 







                                               (4)

where     ⋯m ax
 


, 

    ⋯ ,  
   

  ,  
  





 

 ⋯   ⋯


, 

m ax is maximum delay, and 0 is a matrix having all zero elements 

of which dimension varies accordingly with slight abuse of 

notation. Using this equivalent switched system, the stability 

condition can be given in the following.

Theorem-1 : A networked control system, (1) with state 

feedback and random Markov delay of which maximum is m ax

is stable if there exist  and  for all ∈  ⋯m ax

which satisfy LMIs




  

 




                                             (5)

  

for ∈∈⋯.

Proof : We dene a Lyapunov function  as

                                                  (6)

From the definition of , Lyapunov difference function ∆

can be expressed as

∆             (7)

Since delay follows a Markov process with a transition 
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probability defined in (3), when 
 

∆         (8)

for all   ∈⋯.These are equivalent to the 

following matrix inequality conditions.

                                                     (9)

for all ∈⋯. After applying Schur complement and 

congruence transformation associated with     , (5) 

follows.

It is noted that the theorem-1 is dierent from the theorem-1 in 

[10] in the sense that it is not a statistical stability condition but a 

conventional deterministic stability condition. It can be 

considered as a special case of the theorem-1 in [16] in the sense 

that delay follows the Markov process with a particular structure. 

The theorem-1 can be further simplified for a particular network 

protocol in the following way.

Proposition-1 : When state information is transmitted 

consecutively without automatic request queuing (ARQ) with 

fixed delay of a unit time, a networked control system (1) with 

state feedback and random Markov delay of which maximum is 

dmax is stable if there exist  and  for all ∈ which 

satisfy LMIs in (5) for ∈∈

Proof : When 
 ,    is 1 or  due to the assumed 

network transmission protocol. Remaining part of proof follows 

the same arguments in the proof of the theorem-1.

Ⅳ. Stabilizing Controller Design

In a conventional control system, the design of a state feedback 

controller is usually straight-forward from stability conditions. 

However, it is not the case due to the structure made by 

transformation to an equivalent switched system. Let us rewrite 
 in (4) as   for notational simplicity. With 

this, (5) can be expressed into a conventional LMI form to derive 

a state feedback gain.




    

  




       (10)

where   . It is noted that due to the rank 

deficiency in ,  can not be directly solved from 

and . Thus, we propose three different suboptimal methods to 

find  and assess their performance. For clarity, we first 

provide the description of the existing P-K iterative method used 

for establishing baseline performance.

4-1 P-K iterative method

It is noted that (10) is bi-linear matrix inequality (BMI). One 

simple locally converging iterative algorithm called P-K iteration 

was proposed in [18], which has been applied to many different 

types of optimization with BMI constraints [19][20]. The main 

idea is that (10) is turned into a LMI by fixing a variable. We 

reproduce the P-K iterative (PKI) method for clarity as follows.

Algorithm-1 : PKI method

Step-1 : Initialize    and 
   ∀∈

Step-2 : Set   
∀∈; and nd   argmax with 

respect to  ∀∈ while being subject to constraints that




    

  




  , 

∈∈

Step-3 : Set   
 ∀∈, and find 

  argmax with 

respect to  ∀∈ while being subject to the same constraint 

as in the step-2.

Step-4 : If    or  max , stop, else   , and go to the 

step-2.

4-2 Restricted subspace (RS) method

While the PKI method solves the BMI through two types of 

associated LMIs, the space of  can be restricted to a 

particular space of symmetric matrices which enables to find 

directly from and  . Let the space of ,  be as 

follows. 

 















 

 

⋯ 
⋮

⋮
 ⋯

⋱ 

 max





∈
  ∀∈∪










            (11)

where 
 is the space of a positive definite matrix of size ×. 

For  belonging to  ,  can be solved as

                                                      (12)

where   
 is the th diagonal block of . The reduced 

space method can be summarized in the following.

Algorithm-2 : Restricted subspace method
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Step-1 : Find  ∀∈ and ∈
 ∀∈ satisfying LMIs 

in (10)

Step-2 : Calculate  ∀∈ with (12)

4-3 Progressive method

One of necessary conditions for positive definite matrices is 

that all leading principle minors are positive definite. We propose 

a heuristic method from exploiting this necessary condition which 

is called a progressive method. To develop further, and 

can be represented as × block matrices.

 



  


 

 




  




 

 




 (13)

where 
∈

  
∈

max× 
 

∈

max. (5) can be 

rearranged with inserting (13) into (5) as






 

 

 

 

 
 

 

 





                                    (14)

where    
 , 

 
 

 ,    


  ,   

 
 , 

and * denotes matrix entries from symmetricity. From the 

positive definiteness of the first and the second block leading 

principle minor, any constant positive definite matrix can be 

assigned to . From the third block leading principle minor, 

controller gains can be found from linear matrix inequalities 

applied on the upper × sub-blocks of matrix given in (14). 

This procedure can be summarized as follows.

Algorithm-3 : Progressive method

Step-1 : Set 



 

 




 

Step-2 : Calculate  ∀∈ with constraints 






  

  

  





 

Step-3 : Calculate  ∀∈ with constraints






  

  

  





 

4-4 Opportunistic method

While the restricted subspace method tries to find a solution in 

some subspace of solution space, one can find a solution 

opportunistically. It is noted that (10) can be satisfied if the 

following two matrix inequalities hold for a pair 




 

 

 




  ∈      (15)       

where 
  

  
   

 
∈ ×  , and  


∈

 × max. It is noted that 
 and 

 are none other 

than 

 

 and 

 


. Since the 

feasibility problem with the constraints (15) are solved 

independently from  while 
 and 

 are dependent on 

each other, finding 
 and 

 satisfying (15) does not 

guarantee the feasibility of  satisfying (10). Even though 

there can be many ways to determine  from given 
 and 


, the least square method is considered so that  can be 

chosen to minimize the sum of squared error. The associated 

procedures can be summarized in the following way.

Algorithm-4 : Opportunistic method

Step-1 : Find 
 and 

 from the feasibility problem of (15).

Step-2 : Calculate  ∀∈ with the least square method from 


 and 

. 

Ⅴ. Numerical Experiment

We consider a simple numerical experiment to assess the 

characteristics of the proposed methods. PKI method will be 

considered as a baseline reference for comparison since it is just 

direct application of an existing method to this problem. Both 

system parameters m and n were set to be 2. m ax was set to be 

ranged from 2 to 7. To evaluate the statistical performance of the 

proposed methods, 500 pairs of A and B were independently 

generated from a standard normal distribution for a given m ax . The 

maximum number of iterations for the PKI method was set to be 10.

The success rate of finding a stabilizing controller was 

compared in table-1. The success of finding a stabilizing 

controller was judged from verifying whether the given controller 

satisfied all LMI constraints. It is observed that all considered 

methods except the opportunistic one provide similar 

performance. The degradation with increasing m ax in the 

opportunistic method can be attributed to increasing error in the 

least square due to the increase in the dimension of vector space. 

It is also observed that the performance does not seem to have 



J. Adv. Navig. Technol. 24(6): 549-556, Dec. 2020

https://doi.org/10.12673/jant.2020.24.6.549 554

Table 1. (PKI; PKI method, RS; RS method, Pro; 

Progressive method, Opp : Opportunistic 

method).

Table. 2. Average processing time in seconds for 

calculating the controller gain. (PKI; PKI method, 

RS; RS method, Pro; Progressive method, Opp; 

Opportunistic method).

much dependency on the maximum delay. In table-2, the average 

processing times are compared. The PKI method shows the 

largest processing time as expected due to iterations. Even though 

the processing times of other methods are comparable, the 

smallest processing time is achieved by the RS method due to the 

reduction of the number of variables from the block diagonal 

structure of a variable matrix. It is also observed that the 

progressive method has larger processing time due to solving a 

feasibility problem twice despite the reduction of the dimension 

of a variable matrix. From these results, the RS method is 

observed to provide the best tradeoff between performance and 

complexity among the proposed methods. The RS method 

provides the almost same performance as PKI while its 

complexity is about 13-17% of PKI depending on delay, which 

shows the advantage of the RS method.

As a more practical example, a problem of inverted pendulum 

on a cart was considered[6][8]. Four elements in the state vector 

in this problem corresponds to position of the cart, velocity of the 

cart, angle of the inverted pendulum and angle velocity of the 

inverted pendulum respectively. For the same physical 

configuration as in [10], matrices  and  are given as

  







 

 
 
 

 
 

 
 







 


















                    (16)  




in A was artificially multiplied so that PKI and RS could have 

a solution in the design problem. m ax was set to 2. Processing 

Fig. 2. Trajectory of position of the cart (
) and angle 

of the inverted pendulum (
).

times for PKI and RS were 10.5596 and 0.5181 seconds. The 

states corresponding to the position of the cart and the angle of 

the inverted pendulum which were controlled through the 

controllers developed from each algorithm were shown in fig-2. 

This result verifies that the RS method can be used for developing 

controller with much less complexity than the PKI method while 

performing as good as the PKI method.

Ⅵ. Conclusions

In this paper, a sufficient condition for deterministic stability 

of networked control system having delay incurred by 

transmission error and the bounded transmission delay was 

proposed from the Lyapunov condition for an equivalent 

augmented switched system. Several heuristic methods for 

designing a state feedback controller were proposed and 

compared through numerical experiments. The RS method was 

found to provide a comparable performance to the baseline 

method with much less processing time.

Nonetheless, there is some limitation of this research, since the 

system setup is rather simple for the characterization of the 

problem and associated controller design. The proposed algorithm 

can be extended to a system with multiple state delays and 

multiple input days [21]. Further works need to be done to deal 

with system model uncertainty, or disturbance and measurement 

error. It can be also further extended to incorporate digitization 

and various network issues such as malicious false control 

information to be applicable to a practical networked control 

system.
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