Purpose: Compared to the rapid growth rate of the domestic automotive LED industry so far, the predictive analysis method for demand forecasting or market outlook was insufficient. Accordingly, product characteristics are analyzed through the life trend of LEDs for automotive exterior lamps and the relative strengths of p and q using the Bass model. Also, future demands are predicted. Methods: We used sales data of a leading company in domestic market of automotive LEDs. Considering the autocorrelation error term of this data, parameters m, p, and q were estimated through the modified estimation method of OLS and the NLS(Nonlinear Least Squares) method, and the optimal method was selected by comparing prediction error performance such as RMSE. Future annual demands and cumulative demands were predicted through the growth curve obtained from Bass-NLS model. In addition, various nonlinear growth curve models were applied to the data to compare the Bass-NLS model with potential market demand, and an optimal model was derived. Results: From the analysis, the parameter estimation results by Bass-NLS obtained m=1338.13, p=0.0026, q=0.3003. If the current trend continues, domestic automotive LED market is predicted to reach its maximum peak in 2021 and the maximum demand is $102.23M. Potential market demand was $1338.13M. In the nonlinear growth curve model analysis, the Gompertz model was selected as the optimal model, and the potential market size was $2864.018M. Conclusion: It is expected that the Bass-NLS method will be applied to LED sales data for automotive to find out the characteristics of the relative strength of q/p of products and to be used to predict current demand and future cumulative demand.
Park, Do-Hyung;Chung, Jaekwon;Chung, Yeo Jin;Lee, Dongwon
Journal of Intelligence and Information Systems
/
v.20
no.4
/
pp.1-23
/
2014
Market forecasting aims to estimate the sales volume of a product or service that is sold to consumers for a specific selling period. From the perspective of the enterprise, accurate market forecasting assists in determining the timing of new product introduction, product design, and establishing production plans and marketing strategies that enable a more efficient decision-making process. Moreover, accurate market forecasting enables governments to efficiently establish a national budget organization. This study aims to generate a market growth curve for ICT (information and communication technology) goods using past time series data; categorize products showing similar growth patterns; understand markets in the industry; and forecast the future outlook of such products. This study suggests the useful and meaningful process (or methodology) to identify the market growth pattern with quantitative growth model and data mining algorithm. The study employs the following methodology. At the first stage, past time series data are collected based on the target products or services of categorized industry. The data, such as the volume of sales and domestic consumption for a specific product or service, are collected from the relevant government ministry, the National Statistical Office, and other relevant government organizations. For collected data that may not be analyzed due to the lack of past data and the alteration of code names, data pre-processing work should be performed. At the second stage of this process, an optimal model for market forecasting should be selected. This model can be varied on the basis of the characteristics of each categorized industry. As this study is focused on the ICT industry, which has more frequent new technology appearances resulting in changes of the market structure, Logistic model, Gompertz model, and Bass model are selected. A hybrid model that combines different models can also be considered. The hybrid model considered for use in this study analyzes the size of the market potential through the Logistic and Gompertz models, and then the figures are used for the Bass model. The third stage of this process is to evaluate which model most accurately explains the data. In order to do this, the parameter should be estimated on the basis of the collected past time series data to generate the models' predictive value and calculate the root-mean squared error (RMSE). The model that shows the lowest average RMSE value for every product type is considered as the best model. At the fourth stage of this process, based on the estimated parameter value generated by the best model, a market growth pattern map is constructed with self-organizing map algorithm. A self-organizing map is learning with market pattern parameters for all products or services as input data, and the products or services are organized into an $N{\times}N$ map. The number of clusters increase from 2 to M, depending on the characteristics of the nodes on the map. The clusters are divided into zones, and the clusters with the ability to provide the most meaningful explanation are selected. Based on the final selection of clusters, the boundaries between the nodes are selected and, ultimately, the market growth pattern map is completed. The last step is to determine the final characteristics of the clusters as well as the market growth curve. The average of the market growth pattern parameters in the clusters is taken to be a representative figure. Using this figure, a growth curve is drawn for each cluster, and their characteristics are analyzed. Also, taking into consideration the product types in each cluster, their characteristics can be qualitatively generated. We expect that the process and system that this paper suggests can be used as a tool for forecasting demand in the ICT and other industries.
The method of predicting the future may be predicted by technical characteristics or technical performance. Therefore, technology prediction is used in the field of strategic research that can produce economic and social benefits. In this study, we predicted the future market through the study of how to predict the future with these technical characteristics. The future prediction method was studied through the prediction of the time when the market occupied according to the demand of special product. For forecasting market demand, we proposed the future forecasting model through comparison of representative quantitative analysis methods such as CAGR model, BASS model, Logistic model and Gompertz Growth Curve. This study combines Rogers' theory of innovation diffusion to predict when products will spread to the market. As a result of the research, we developed a methodology to predict when a particular product will mature in the future market through the spread of various factors for the special product to occupy the market. However, there are limitations in reducing errors in expert judgment to predict the market.
A total of 6,973 steer growth records of Hanwoo breeding bull's progeny test data collected from 1989 to 2015 were analyzed to identify the most appropriate growth curve among three growth curve models (Gompertz, Logistic and von Bertalanffy). The Gompertz growth curve model equation was $W_t=990.5e^{{-2.7479e}^{-0.00241t}}$, the Logistic growth curve model equation was $W_t=772(1+8.3314e^{-0.00475t})^{-1}$, and the von Bertalanffy growth curve model equation was $W_t=1,196.4(1-0.646e^{-0.00162t})^3$. The Gompertz model parameters A, b, and k were estimated to be $990.5{\pm}10.27$, $2.7479{\pm}0.0068$, and $0.00241{\pm}0.000028$, respectively. The inflection point age was estimated to be 421 days and the weight of inflection point was 365.3 kg. The Logistic model parameters A, b, and k were estimated to be $772.0{\pm}4.12$, $8.3314{\pm}0.0453$, and $0.00475{\pm}0.000033$, respectively. The inflection point age was estimated to be 445 days and the weight of inflection point was 385.0 kg. The von Bertalanffy model parameters A, b, and k were estimated to be $1196.4{\pm}18.39$, $0.646{\pm}0.0010$, and $0.00162{\pm}0.000027$, respectively. The inflection point age was estimated to be 405 days and the weight of inflection point was 352.0 kg. Mature body weight of the von Bertalanffy model was 1196.4 kg, the Gompertz model was 990.5 kg, and the Logistic model was 772.0 kg. The difference between actual and estimated weights was similar in the Logistic model and the von Bertalanffy model. The difference between market weight and estimated market weight was the lowest in the Gompertz model. The growth curve using the von Bertalanffy model showed the lowest mean square error.
Park, Ju-Seok;Ko, Young-Hyun;Jun, Chi-Hyuck;Lee, Jae-Hwan;Hong, Seung-Pyo;Moon, Hyung-Don
IE interfaces
/
v.16
no.1
/
pp.103-110
/
2003
Growth curves are widely used in forecasting the market demand. When there are only a few data points available, the estimated model parameters have a low confidence. In this case, if some expert opinions are available, it would be better for predicting future demand to adjust the model parameters using these information. This paper proposes the methodology for re-estimation of model parameters in growth curves when adjusting market potential and/or time of maximum sales. We also provide the detailed procedures for five growth curves including Bass, Logistic, Gompertz, Weibull and Cumulative Lognormal models. Applications to real data are also included.
This paper investigates the existence of the environmental Kuznets curve (EKC) for carbon dioxide $CO_2$ emissions and its causal relationships with economic growth and openness by using time series data (1971-2006) from China (an emerging market), Korea (a newly industrialized country), and Japan (a developed country). The sample countries span a whole range of development stages from industrialized to newly industrialized and emerging market economies. The environmental consequences according to openness and economic growth do not show uniform results across the countries. Depending on the national characteristics, the estimated EKC show different temporal patterns. China shows an N-shaped curve while Japan has a U-shaped curve. Such dissimilarities are also found in the relationship between $CO_2$ emissions and openness. In the case of Korea, and Japan it represents an inverted U-shaped curve while China shows a U-shaped curve. We also analyze the dynamic relationships between the variables by adopting a vector auto regression or vector error correction model. These models through the impulse response functions allow for analysis of the causal variable's influence on the dynamic response of emission variables, and it adopts a variance decomposition to explain the magnitude of the forecast error variance determined by the shocks to each of the causal variables over time. Results show evidence of large heterogeneity among the countries and variables impacts.
Journal of the Korea Institute of Information and Communication Engineering
/
v.17
no.6
/
pp.1336-1341
/
2013
Through reviewing the characteristics of digital TVs, which have emerged in CES since 2005, in the view of technology growth and substitution curves, this paper is to provide a prediction on the next generation's multi-media on smart environment. As a result, digital TV has been developed on the flow of its technology growth curve from the early version in 2005 to smart digital TV in 2013, which emphasizes the key word "connected", and it has already come to the market puberty.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2013.05a
/
pp.96-98
/
2013
Through reviewing the characteristics of digital TVs, which have emerged in CES since 2005, in the view of technology growth and substitution curves, this paper is to provide a prediction on the next generation's multi-media on smart environment. As a result, digital TV has been developed on the flow of its technology growth curve from the early version in 2005 to smart digital TV in 2013, which emphasizes the key word "connected", and it has already come to the market puberty. Also, as it has the characteristics such as supporting multi functional and multi media environments and introducing curved or flexible display, the digital TV in CES 2013 has reached in introductory stage on the technology substitution curve.
The growth of mobile technology particularly smartphone applications such as ticketing, access control, and making payments are on the increase. Elliptic Curve Cryptography (ECC)-based systems have also become widely available in the market offering various convenient services by bringing smartphones in proximity to ECC-enabled objects. When a system user attempts to establish a connection, the AIK sends hashes to a server that then verifies the values. ECC can be used with various operating systems in conjunction with other technologies such as biometric verification systems, smart cards, anti-virus programs, and firewalls. The use of Elliptic-curve cryptography ensures efficient verification and signing of security status verification reports which allows the system to take advantage of Trusted Computing Technologies. This paper proposes a device payment method based on ECC and Shuffling based on distributed key exchange. Our study focuses on the secure and efficient implementation of ECC in payment device. This novel approach is well secure against intruders and will prevent the unauthorized extraction of information from communication. It converts plaintext into ASCII value that leads to the point of curve, then after, it performs shuffling to encrypt and decrypt the data to generate secret shared key used by both sender and receiver.
This study investigated the growth characteristics of four strains of newly developed synthetic Korean native commercial chickens (KNCs). We investigated a suitable growth curve model in KNCs and estimated the number of days to reach a 2 kg market weight. Body weight was measured at 2-week intervals from birth to 12 weeks of age. The growth curves were estimated using von Berteralanffy, Gompertz, and logistic functions. The results showed that males were significantly heavier than females at all ages, but there were no significant differences in body weight between strains, except at birth and 2 and 6 weeks of age. The coefficients of determination and adjusted determination of growth function had high goodness-of-fit (97.4~99.7). Of the growth curve parameters, the mature weight and growth ratio were higher in males than in females, but the maturity rate was similar in males and females. The inflection point occurred at approximately 7 weeks of age for females and 8 to 9 weeks of age for males. The weights estimated from the growth curve functions almost agreed with the actual weights, except for male weights estimated using the von Bertalanffy function. The coefficients of determination of the regression equations for weight to age were 0.9583 to 0.9746. The 8- and 10-week-old body weights estimated using the regression equation, and the 12-week-old weight estimated using the logistic function were most similar to the actual weight. Using these models, the estimated age of KNCs to reach 2 kg was 62.0~64.6 days for males and 74.9~78.6 days for females.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.