• Title/Summary/Keyword: Marker enzyme

Search Result 294, Processing Time 0.027 seconds

Improvement of a Sulfolobus-E. coli Shuttle Vector for Heterologous Gene Expression in Sulfolobus acidocaldarius

  • Hwang, Sungmin;Choi, Kyoung-Hwa;Yoon, Naeun;Cha, Jaeho
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.2
    • /
    • pp.196-205
    • /
    • 2015
  • A Sulfolobus-E. coli shuttle vector for an efficient expression of the target gene in S. acidocaldarius strain was constructed. The plasmid-based vector pSM21 and its derivative pSM21N were generated based on the pUC18 and Sulfolobus cryptic plasmid pRN1. They carried the S. solfataricus P2 pyrEF gene for the selection marker, a multiple cloning site (MCS) with C-terminal histidine tag, and a constitutive promoter of the S. acidocaldarius gdhA gene for strong expression of the target gene, as well as the pBR322 origin and ampicillin-resistant gene for E. coli propagation. The advantage of pSM21 over other Sulfolobus shuttle vectors is that it contains a MCS and a histidine tag for the simple and easy cloning of a target gene as well as one-step purification by histidine affinity chromatography. For successful expression of the foreign genes, two genes from archaeal origins (PH0193 and Ta0298) were cloned into pSM21N and the functional expression was examined by enzyme activity assay. The recombinant PH0193 was successfully expressed under the control of the gdhA promoter and purified from the cultures by His-tag affinity chromatography. The yield was approximately 1 mg of protein per liter of cultures. The enzyme activity measurements of PH0913 and Ta0298 revealed that both proteins were expressed as an active form in S. acidocaldarius. These results indicate that the pSM21N shuttle vector can be used for the functional expression of foreign archaeal genes that form insoluble aggregates in the E. coli system.

An Assay Method for Screening Inhibitors of Prolyl 4-hydroxylase in Immortalized Rat Hepatic Stellate HSC-T6 Cells

  • Choi, Hwa-Jung;Soh, Yun-Jo
    • Biomolecules & Therapeutics
    • /
    • v.15 no.4
    • /
    • pp.261-265
    • /
    • 2007
  • Hydroxyproline (HYP) is a post-translational product of proline hydroxylation catalyzed by an enzyme prolyl 4-hydroxylase (P4H) which plays a crucial role in the synthesis of all collagens. Considering the role of collagen and its significance in many clinically important diseases such as liver fibrosis, a great deal of attention has been directed toward the development of an assay at cell-based system. The reason is that cell-based assay system is more efficient than enzyme-based in vitro system and takes much less time than in vivo system. Several assay procedures developed for P4H are laborious, time-consuming and not feasible for the massive-screening. Here, we report the cell-based assay method of prolyl 4-hydroxylase in immortalized rat hepatic stellate HSC-T6 cells. To optimize the cell culture condition to assay for HYP content, various concentrations of reagents were treated for different times in HSC-T6 cells. Our data showed that the treatment with ascorbate in a hypoxic condition for 24 h resulted in the maximal increase of HYP by 1.8 fold. Alternatively, cobalt chloride ($5\;{\mu}M$) and ascorbate ($50\;{\mu}M$) in normoxic states exhibited similar effect on the production of HYP as in a hypoxic condition. Therefore, cobalt chloride can be substituted for a hypoxic condition when an anaerobic chamber is not available. Rosiglitazone and HOE077, known as inhibitors of collagen, synthesis decreased P4H enzyme activity by 32.3% and 15%, respectively, which coincided with previous reports from liver tissues. The level of the smooth muscle ${\alpha}$-actin, a marker of activated stellate cells, was significantly increased under hypoxia, suggesting that our experimental condition could work for screening the anti-fibrotic compounds. The assay procedure took only 3 days after treatment with agents, while assays from the primary stellate cells or liver tissues have taken several weeks. Considering the time and expenses, this assay method could be useful to screen the compounds for the inhibitor of prolyl 4-hydroxylase.

Effect of Soybean Supplementation on Murine Drug-metabolizing Enzymes and Benzo(a)pyrene-induced Lung Cancer Develpoment (콩보충식이가 생쥐의 해독효소계 및 Benzo(a)pyrene에 의해서 유도된 폐암발생에 미치는 영향)

  • Kwon, Chong-Suk;Kim, Jong-Sang
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.535-539
    • /
    • 1999
  • Soybean has drawn much attention mainly due to its chemopreventive action as well as antiestrogenic effect. Although suppression of breast and prostate cancers were believed to be exerted via antiestrogenic or antiandrogenic activity of genistein, its mechanism of prevention against other cancers has not been clearly demonstrated. We proposed that prevention by soybean from other cancers than sex hormone -related cancers was achieved via modulation of drug-metabolizing enzymes. Addition of acid hydrolysate of 80% methanol extract of soyflour to diet caused a significant induction of quinone reductase, an anticarcinogenic marker enzyme and one of drug-metabolizing enzymes, in mouse lung while it suppressed arylhydrocarbon hydroxylase, involved in bioactivation of procarcinogens, in kidney and small intestine. It is likely that active components exist in a conjugated form and released by acid hydrolysis to be able to affect drug-metabolizing enzyme and exert chemopreventive activity. Benzo(a)pyrene-induced tumor development in mouse lung was greatly reduced by soybean extract supplementation, which is consistent with the extract's capability to modulate favorably arylhydrocarbon hydroxylase and quinone reductase towards chemoprevention.

  • PDF

Studies on the Relationship of Lipid Peroxidation and Drug Metabolizing Enzyme in Regenerating Rat Liver (재생중인 흰쥐간의 Lipid Peroxidation과 약물대사효소의 상관관계에 관한 연구)

  • 고기석;최춘근
    • The Korean Journal of Zoology
    • /
    • v.27 no.4
    • /
    • pp.221-230
    • /
    • 1984
  • The activities of aminopyrine demethylase which is marker enzyme of the microsomal drug-metabolizing system, NADPH-cytochrome a reductase and glutathione peroxidase were measured during the course of liver regeneration after about seventy percent hepatectomy in Wistar rats. In addition, the extent of lipid peroxidation and contents of cytochrome P-450 were also measured. Partial hepatectomy produced a significant depression in aminopyrine demethylase, to reach a minium about 24 hours after operation, but this activity was increased to normal value during regeneration. On the other hand, in sham-operated animals, this showed no change. All the activities of NADPH-chrome P-450 contents of liver microsomes were rapidly decreased at the early stage of regeneration. These values returned to normal after 7 days. By contrast, the activity of glutathione peroxidase was nearly unchanged. According to these results, at the early stage of regeneration, the decrease of cytochrome P-450 and NADPH-cytochrome c reductase activity lead to decrease of lipid peroxidation and drug metabolizing enzyme activity. But these phenomena were not detected after 7 days of regeneration.

  • PDF

Development of an ISSR-Derived SCAR Marker in Korean Ginseng Cultivars (Panax ginseng C. A. Meyer)

  • Lee, Jei-Wan;Kim, Young-Chang;Jo, Ick-Hyun;Seo, A-Yeon;Lee, Jeong-Hoon;Kim, Ok-Tae;Hyun, Dong-Yun;Cha, Seon-Woo;Bang, Kyong-Hwan;Cho, Joon-Hyeong
    • Journal of Ginseng Research
    • /
    • v.35 no.1
    • /
    • pp.52-59
    • /
    • 2011
  • Recently, new ginseng cultivars having superior agricultural traits have been developed in Korea. For newly developed plant cultivars, the identification of distinctiveness is very important factors not only in plant cultivar management but also in breeding programs. Thus, eighty-five inter simple sequence repeat (ISSR) primers were applied to detect polymorphisms among six major Korean ginseng cultivars and two foreign ginsengs. A total of 197 polymorphic bands with an average 5.8 polymorphic bands and 2.9 banding patterns per assay unit across six Korean ginseng cultivars and foreign ginsengs from 236 amplified ISSR loci with an average 6.9 loci per assay unit were generated by 34 out of 85 ISSR primers. Three species of Panax ginseng including the Korean ginseng cultivars, P. quinquefolius, and P. notoginseng, could be readily discriminated using most tested primers. UBC-821, UBC-868, and UBC-878 generated polymorphic bands among the six Korean ginseng cultivars, and could distinguish them from foreign ginsengs. Sequence characterized amplified region (SCAR) marker system was introduced in order to increase the reproducibility of the polymorphism. One SCAR marker, PgI821C650, was successfully converted from the randomly amplified polymorphism by UBC-821. It showed the expected dominant polymorphism among ginseng samples. In addition, the specific polymorphism for Sunwon was generated by treating Taq I restriction enzyme to polymerase chain reaction products of PgI821C650. These results will serve as useful DNA markers for identification of Korean ginseng, especially Sunwon cultivar, seed management, and molecular breeding program supplemented with marker-assisted selection.

Biochemical and Molecular Insights into Bile Salt Hydrolase in the Gastrointestinal Microflora - A Review -

  • Kim, Geun-Bae;Lee, Byong H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.10
    • /
    • pp.1505-1512
    • /
    • 2005
  • Bile salt deconjugation is the most biologically significant reaction among the bacterial alterations of bile acids in the gastrointestinal tract of human and animal. The responsible enzyme, bile salt hydrolase (BSH), catalyzes the hydrolysis of glycineand/or taurine-conjugated bile salts into amino acid residues and deconjugated bile acids. Herein we review current knowledge on the distribution of BSH activity among various microorganisms with respect to their biochemical and molecular characteristics. The proposed physiological impact of BSH activity on the host animal as well as on the BSH-producing bacterial cells is discussed. BSH activity of the probiotic strains is examined on the basis of BSH hypothesis, which was proposed to explain cholesterol-lowering effects of probiotics. Finally, the potential applications of BSH research are briefly discussed.

Association of a Single Nucleotide Polymorphism in the 5'-Flanking Region of Porcine HSP70.2 with Backfat Thickness in Duroc Breed

  • Chen, Ming-Yu;Huang, San-Yuan;Lin, En-Chung;Hseu, Tzong-Hsiung;Lee, Wen-Chuan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.1
    • /
    • pp.100-103
    • /
    • 2003
  • Higher environmental temperature affects the economic performance of pigs. Heat shock protein 70 has been shown to play an important role in thermoresistance. The purpose of this study was to assess the effect of a single nucleotide polymorphism in the 5'-flanking region of porcine HSP70.2 on growth performance in Taiwanese Duroc. The genotype of this nt 393 polymorphic site could be verified by digestion with Bsa WI restriction enzyme of a PCR product. Pigs with TT and TC genotypes have thinner backfats than those with CC type (p<0.05). The result suggested that the polymorphic Bsa WI site in the 5'flanking region of porcine HSP70.2 may be used as a marker for the early selection of ultrasonic backfat thickness in Duroc pigs.

Protective Effects of Angelica koreana on Experimentally Induced Liver Injury (실험적 간장해에 대한 강활의 보호효과)

  • Yoon Soo Hong;Ha Hun
    • Environmental Analysis Health and Toxicology
    • /
    • v.20 no.2 s.49
    • /
    • pp.161-165
    • /
    • 2005
  • The present study was carried out to find the possible protective effects of Angelica koreana water extract on biochemical parameters in benzo(a)pyrene (B(a)P)-induced liver injury in rats. B(a)P treatment (0.1 mg/kg, 1.p.) caused a liver damages, which led to biochemical alterations in serum and liver enzyme activities and serum lipid levels. The activities of liver marker enzymes, especially, aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) were markedly changed in B(a)P treatment. Oral administration of Angelica koreana (50 mg/kg) recovered these biochemical Parameters to near normal levels. Therefore, the present results have revealed that Angelica koreana water extract might have the antihepatotoxic effect and consequently ameliorate liver damage associated with B(a)P in rats.

Current Technologies and Related Issues for Mushroom Transformation

  • Kim, Sinil;Ha, Byeong-Suk;Ro, Hyeon-Su
    • Mycobiology
    • /
    • v.43 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • Mushroom transformation requires a series of experimental steps, including generation of host strains with a desirable selective marker, design of vector DNA, removal of host cell wall, introduction of foreign DNA across the cell membrane, and integration into host genomic DNA or maintenance of an autonomous vector DNA inside the host cell. This review introduces limitations and obstacles related to transformation technologies along with possible solutions. Current methods for cell wall removal and cell membrane permeabilization are summarized together with details of two popular technologies, Agrobacterium tumefaciens-mediated transformation and restriction enzyme-mediated integration.

Enhancement of UVB radiation-mediated apoptosis by knockdown of cytosolic NADP+-dependent isocitrate dehydrogenase in HaCaT cells

  • Lee, Su Jeong;Park, Jeen-Woo
    • BMB Reports
    • /
    • v.47 no.4
    • /
    • pp.209-214
    • /
    • 2014
  • Ultraviolet B (UVB) radiation induces the production of reactive oxygen species (ROS) that promote apoptotic cell death. We showed that cytosolic $NADP^+$-dependent isocitrate dehydrogenase (IDPc) plays an essential role in the control of cellular redox balance and defense against oxidative damage, by supplying NADPH for antioxidant systems. In this study, we demonstrated that knockdown of IDPc expression by RNA interference enhances UVB-induced apoptosis of immortalized human HaCaT keratinocytes. This effect manifested as DNA fragmentation, changes in cellular redox status, mitochondrial dysfunction, and modulation of apoptotic marker expression. Based on our findings, we suggest that attenuation of IDPc expression may protect skin from UVB-mediated damage, by inducing the apoptosis of UV-damaged cells.