DOI QR코드

DOI QR Code

Current Technologies and Related Issues for Mushroom Transformation

  • Kim, Sinil (Division of Applied Life Science and Research Institute for Life Science, Gyeongsang National University) ;
  • Ha, Byeong-Suk (Division of Applied Life Science and Research Institute for Life Science, Gyeongsang National University) ;
  • Ro, Hyeon-Su (Division of Applied Life Science and Research Institute for Life Science, Gyeongsang National University)
  • Received : 2015.02.10
  • Accepted : 2015.03.02
  • Published : 2015.03.31

Abstract

Mushroom transformation requires a series of experimental steps, including generation of host strains with a desirable selective marker, design of vector DNA, removal of host cell wall, introduction of foreign DNA across the cell membrane, and integration into host genomic DNA or maintenance of an autonomous vector DNA inside the host cell. This review introduces limitations and obstacles related to transformation technologies along with possible solutions. Current methods for cell wall removal and cell membrane permeabilization are summarized together with details of two popular technologies, Agrobacterium tumefaciens-mediated transformation and restriction enzyme-mediated integration.

Keywords

References

  1. Nevalainen H, Peterson R. Making recombinant proteins in filamentous fungi: are we expecting too much? Front Microbiol 2014;5:75.
  2. Su X, Schmitz G, Zhang M, Mackie RI, Cann IK. Heterologous gene expression in filamentous fungi. Adv Appl Microbiol 2012;81:1-61. https://doi.org/10.1016/B978-0-12-394382-8.00001-0
  3. Singh SS, Wang H, Chan YS, Pan W, Dan X, Yin CM, Akkouh O, Ng TB. Lectins from edible mushrooms. Molecules 2014;20:446-69. https://doi.org/10.3390/molecules20010446
  4. Wosten HA, Scholtmeijer K. Applications of hydrophobins: current state and perspectives. Appl Microbiol Biotechnol 2015;99:1587-97. https://doi.org/10.1007/s00253-014-6319-x
  5. El Enshasy HA, Hatti-Kaul R. Mushroom immunomodulators: unique molecules with unlimited applications. Trend Biotechnol 2013;31:668-77. https://doi.org/10.1016/j.tibtech.2013.09.003
  6. Wasser SP. Medicinal mushroom science: current perspectives, advances, evidences, and challenges. Biomed J 2014;37:345-56. https://doi.org/10.4103/2319-4170.138318
  7. Howard RJ. Ultrastructural analysis of hyphal tip cell growth in fungi: Spitzenkorper, cytoskeleton and endomembranes after freeze-substitution. J Cell Sci 1981;48:89-103.
  8. Bauer R, Mendgen K, Oberwinkler F. Septal pore apparatus of the smut Ustacystis waldsteiniae. Myclogia 1995;87:18-24. https://doi.org/10.2307/3760941
  9. Shepherd VA, Orlovich DA, Ashford AE. Cell-to-cell transport via motile tubules in growing hyphae of a fungus. J Cell Sci 1993;105(Pt 4):1173-8.
  10. Farrag RM. Ultrastructure, glutathione and low molecular weight proteins of Penicillium brevicompactum in response to cobalt. Pol J Microbiol 2009;58:327-38. https://doi.org/10.1099/jmm.0.006494-0
  11. Muller WH, van Aelst AC, van der Krift TP, Boekhout T. Scanning electron microscopy of the septal pore cap of the basidiomycete Schizophyllum commune. Can J Microbiol 1994;40:879-83. https://doi.org/10.1139/m94-139
  12. Selitrennikoff CP. Antifungal proteins. Appl Environ Microbiol 2001;67:2883-94. https://doi.org/10.1128/AEM.67.7.2883-2894.2001
  13. Hofsten B, Hofsten A. Ultrastructure of a thermotolerant Basidiomycete possibly suitable for production of food protein. Appl Microbiol 1974;27:1142-8.
  14. Nieuwenhuis BP, Debets AJ, Aanen DK. Sexual selection in mushroom-forming Basidiomycetes. Proc Biol Sci 2011;278:152-7. https://doi.org/10.1098/rspb.2010.1110
  15. Kothe E. Mating-type genes for basidiomycete strain improvement in mushroom farming. Appl Microbiol Biotechnol 2001;56:602-12. https://doi.org/10.1007/s002530100763
  16. Griffiths AJ. Natural plasmids of filamentous fungi. Microbiol Rev 1995;59:673-85.
  17. Gems D, Johnstone IL, Clutterbuck AJ. An autonomously replicating plasmid transforms Aspergillus nidulans at high frequency. Gene 1991;98:61-7. https://doi.org/10.1016/0378-1119(91)90104-J
  18. Schoberle TJ, Nguyen-Coleman CK, May GS. Plasmids for increased efficiency of vector construction and genetic engineering in filamentous fungi. Fungal Genet Biol 2013;58-59:1-9. https://doi.org/10.1016/j.fgb.2013.07.002
  19. Rothstein RJ. One-step gene disruption in yeast. Methods Enzymol 1983;101:202-11. https://doi.org/10.1016/0076-6879(83)01015-0
  20. Binninger DM, Skrzynia C, Pukkila PJ, Casselton LA. DNAmediated transformation of the basidiomycete Coprinus cinereus. EMBO J 1987;6:835-40.
  21. Tilby MJ. Tryptophan biosynthesis in Coprinus lagopus: a genetic analysis of mutants. J Gen Microbiol 1976;93:126-32. https://doi.org/10.1099/00221287-93-1-126
  22. Kiguchi T, Yanagi SO. Intraspecific heterokaryon and fruit body formation in Coprinus macrorhizus by protoplast fusion of auxotrophic mutants. Appl Microbiol Biotechnol 1985;22:121-7.
  23. Lee K, Lee SE. Saccharomyces cerevisiae Sae2- and Tel1-dependent single-strand DNA formation at DNA break promotes microhomology-mediated end joining. Genetics 2007;176:2003-14. https://doi.org/10.1534/genetics.107.076539
  24. Mezard C, Nicolas A. Homologous, homeologous, and illegitimate repair of double-strand breaks during transformation of a wild-type strain and a rad52 mutant strain of Saccharomyces cerevisiae. Mol Cell Biol 1994;14:1278-92. https://doi.org/10.1128/MCB.14.2.1278
  25. Symington LS, Gautier J. Double-strand break end resection and repair pathway choice. Annu Rev Genet 2011;45:247-71. https://doi.org/10.1146/annurev-genet-110410-132435
  26. Orr-Weaver TL, Szostak JW, Rothstein RJ. Yeast transformation: a model system for the study of recombination. Proc Natl Acad Sci U S A 1981;78:6354-8. https://doi.org/10.1073/pnas.78.10.6354
  27. Ishibashi K, Suzuki K, Ando Y, Takakura C, Inoue H. Nonhomologous chromosomal integration of foreign DNA is completely dependent on MUS-53 (human Lig4 homolog) in Neurospora. Proc Natl Acad Sci U S A 2006;103:14871-6. https://doi.org/10.1073/pnas.0604477103
  28. Ninomiya Y, Suzuki K, Ishii C, Inoue H. Highly efficient gene replacements in Neurospora strains deficient for nonhomologous end-joining. Proc Natl Acad Sci U S A 2004;101:12248-53. https://doi.org/10.1073/pnas.0402780101
  29. Nakazawa T, Ando Y, Kitaaki K, Nakahori K, Kamada T. Efficient gene targeting in ${\Delta}$Cc.ku70 or ${\Delta}$Cc.lig4 mutants of the agaricomycete Coprinopsis cinerea. Fungal Genet Biol 2011;48:939-46. https://doi.org/10.1016/j.fgb.2011.06.003
  30. Leem YE, Kim SJ, Ross IK, Choi HT. Transformation and laccase mutant isolation in Coprinus congregatus by restriction enzyme-mediated integration. FEMS Microbiol Lett 1999;172: 35-40. https://doi.org/10.1111/j.1574-6968.1999.tb13446.x
  31. Maehara T, Yoshida M, Ito Y, Tomita S, Takabatake K, Ichinose H, Kaneko S. Development of a gene transfer system for the mycelia of Flammulina velutipes Fv-1 strain. Biosci Biotechnol Biochem 2010;74:1126-8. https://doi.org/10.1271/bbb.100021
  32. Kim S, Song J, Choi HT. Genetic transformation and mutant isolation in Ganoderma lucidum by restriction enzymemediated integration. FEMS Microbiol Lett 2004;233:201-4. https://doi.org/10.1111/j.1574-6968.2004.tb09483.x
  33. Hirano T, Sato T, Yaegashi K, Enei H. Efficient transformation of the edible basidiomycete Lentinus edodes with a vector using a glyceraldehyde-3-phosphate dehydrogenase promoter to hygromycin B resistance. Mol Gen Genet 2000;263:1047-52. https://doi.org/10.1007/s004380050033
  34. Nakade K, Watanabe H, Sakamoto Y, Sato T. Gene silencing of the Lentinula edodes lcc1 gene by expression of a homologous inverted repeat sequence. Microbiol Res 2011;166:484-93. https://doi.org/10.1016/j.micres.2010.09.004
  35. Sato T, Yaegashi K, Ishii S, Hirano T, Kajiwara S, Shishido K, Enei H. Transformation of the edible basidiomycete Lentinus edodes by restriction enzyme-mediated integration of plasmid DNA. Biosci Biotechnol Biochem 1998;62:2346-50. https://doi.org/10.1271/bbb.62.2346
  36. Irie T, Sato T, Saito K, Honda Y, Watanabe T, Kuwahara M, Enei H. Construction of a homologous selectable marker gene for Lentinula edodes transformation. Biosci Biotechnol Biochem 2003;67:2006-9. https://doi.org/10.1271/bbb.67.2006
  37. Noh W, Kim SW, Bae DW, Kim JY, Ro HS. Genetic introduction of foreign genes to Pleurotus eryngii by restriction enzyme-mediated integration. J Microbiol 2010;48:253-6. https://doi.org/10.1007/s12275-010-9278-7
  38. Yin Y, Liu Y, Jin H, Wang S, Zhao S, Geng X, Li M, Xu F. Polyethylene glycol-mediated transformation of fused egfphph gene under the control of gpd promoter in Pleurotus eryngii. Biotechnol Lett 2012;34:1895-900. https://doi.org/10.1007/s10529-012-0985-5
  39. Lin J, Zheng M, Wang J, Shu W, Guo L. Efficient transformation and expression of gfp gene in the edible mushroom Pleurotus nebrodensis. Prog Nat Sci 2008;18:819-24. https://doi.org/10.1016/j.pnsc.2008.01.015
  40. Irie T, Honda Y, Hirano T, Sato T, Enei H, Watanabe T, Kuwahara M. Stable transformation of Pleurotus ostreatus to hygromycin B resistance using Lentinus edodes GPD expression signals. Appl Microbiol Biotechnol 2001;56:707-9. https://doi.org/10.1007/s002530100651
  41. Irie T, Honda Y, Watanabe T, Kuwahara M. Efficient transformation of filamentous fungus Pleurotus ostreatus using single-strand carrier DNA. Appl Microbiol Biotechnol 2001;55:563-5. https://doi.org/10.1007/s002530000535
  42. Joh JH, Kim BG, Chu KS, Kong WS, Yoo YB, Lee CS. The efficient transformation of Pleurotus ostreatus using REMI method. Mycobiology 2003;31:32-5. https://doi.org/10.4489/MYCO.2003.31.1.032
  43. Peng M, Singh NK, Lemke PA. Recovery of recombinant plasmids from Pleurotus ostreatus transformants. Curr Genet 1992;22:53-9. https://doi.org/10.1007/BF00351742
  44. Li G, Li R, Liu Q, Wang Q, Chen M, Li B. A highly efficient polyethylene glycol-mediated transformation method for mushrooms. FEMS Microbiol Lett 2006;256:203-8. https://doi.org/10.1111/j.1574-6968.2006.00110.x
  45. Kim K, Leem Y, Kim K, Kim K, Choi HT. Transformation of the medicinal basidiomycete Trametes versicolor to hygromycin B resistance by restriction enzyme mediated integration. FEMS Microbiol Lett 2002;209:273-6. https://doi.org/10.1111/j.1574-6968.2002.tb11143.x
  46. Kitamura K, Kaneko T, Yamamoto Y. Lysis of viable yeast cells by enzymes of Arthrobacter luteus. Arch Biochem Biophys 1971;145:402-4. https://doi.org/10.1016/0003-9861(71)90053-1
  47. Gietz RD, Schiestl RH, Willems AR, Woods RA. Studies on the transformation of intact yeast cells by the LiAc/SS.DNA/ PEG procedure. Yeast 1995;11:355-60. https://doi.org/10.1002/yea.320110408
  48. Hashizaki K, Taguchi H, Itoh C, Sakai H, Abe M, Saito Y, Ogawa N. Effects of poly(ethylene glycol) (PEG) chain length of PEG-lipid on the permeability of liposomal bilayer membranes. Chem Pharm Bull (Tokyo) 2003;51:815-20. https://doi.org/10.1248/cpb.51.815
  49. Brzobohaty B, Kovac L. Factors enhancing genetic transformation of intact yeast cells modify cell wall porosity. J Gen Microbiol 1986;132:3089-93.
  50. Pham TA, Kawai S, Murata K. Visualization of the synergistic effect of lithium acetate and single-stranded carrier DNA on Saccharomyces cerevisiae transformation. Curr Genet 2011;57:233-9. https://doi.org/10.1007/s00294-011-0341-7
  51. van de Rhee MD, Graca PM, Huizing HJ, Mooibroek H. Transformation of the cultivated mushroom, Agaricus bisporus, to hygromycin B resistance. Mol Gen Genet 1996;250:252-8.
  52. Kuo CY, Chou SY, Hseu RS, Huang CT. Heterologous expression of EGFP in enoki mushroom Flammulina velutipes. Bot Stud 2010;51:303-9.
  53. Kim JK, Park YJ, Kong WS, Kang HW. Highly efficient electroporation-mediated transformation into edible mushroom Flammulina velutipes. Mycobiology 2010;38:331-5. https://doi.org/10.4489/MYCO.2010.38.4.331
  54. Sun L, Cai H, Xu W, Hu Y, Gao Y, Lin Z. Efficient transformation of the medicinal mushroom Ganoderma lucidum. Plant Mol Biol Rep 2001;19:383-4. https://doi.org/10.1007/BF02772841
  55. Sun L, Cai H, Xu W, Hu Y, Lin Z. CaMV 35S promoter directs ${\beta}$-glucuronidase expression in Ganoderma lucidum and Pleurotus citrinopileatus. Mol Biotechnol 2002;20:239-44. https://doi.org/10.1385/MB:20:3:239
  56. Kuo CY, Huang CT. A reliable transformation method and heterologous expression of ${\beta}$-glucuronidase in Lentinula edodes. J Microbiol Methods 2008;72:111-5. https://doi.org/10.1016/j.mimet.2007.11.006
  57. Sunagawa M, Magae Y. Transformation of the edible mushroom Pleurotus ostreatus by particle bombardment. FEMS Microbiol Lett 2002;211:143-6. https://doi.org/10.1111/j.1574-6968.2002.tb11216.x
  58. Sunagawa M, Murata H, Miyazaki Y, Nakamura M. Transformation of Lyophyllum decastes by particle bombardment. Mycoscience 2007;48:195-7. https://doi.org/10.1007/S10267-007-0345-9
  59. Lai EM, Kado CI. The T-pilus of Agrobacterium tumefaciens. Trends Microbiol 2000;8:361-9. https://doi.org/10.1016/S0966-842X(00)01802-3
  60. Cardoza RL, Vizcaino JA, Hermosa MR, Monte E, Gutierrez S. A comparison of the phenotypic and genetic stability of recombinant Trichoderma spp. generated by protoplast- and Agrobacterium-mediated transformation. J Microbiol 2006;44:383-95.
  61. De Groot MJ, Bundock P, Hooykaas PJ, Beijersbergen AG. Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Biotechnol 1998;16:839-42. https://doi.org/10.1038/nbt0998-839
  62. Michielse CB, Ram AF, Hooykaas PJ, Hodel CA. Role of bacterial virulence proteins in Agrobacterium-mediated transformation of Aspergillus awamori. Fungal Genet Biol 2004;41:571-8. https://doi.org/10.1016/j.fgb.2004.01.004
  63. Ruiz-Diez B. Strategies for the transformation of filamentous fungi. J Appl Microbiol 2002;92:189-95. https://doi.org/10.1046/j.1365-2672.2002.01516.x
  64. Chen X, Stone M, Schlagnhaufer C, Romaine CP. A fruiting body tissue method for efficient Agrobacterium-mediated transformation of Agaricus bisporus. Appl Environ Microbiol 2000;66:4510-3. https://doi.org/10.1128/AEM.66.10.4510-4513.2000
  65. Mikosch TS, Lavrijssen B, Sonnenberg AS, van Griensven LJ. Transformation of the cultivated mushroom Agaricus bisporus (Lange) using T-DNA from Agrobacterium tumefaciens. Curr Genet 2001;39:35-9. https://doi.org/10.1007/s002940000178
  66. Burns C, Gregory KE, Kirby M, Cheung MK, Riquelme M, Elliott TJ, Challen MP, Bailey A, Foster GD. Efficient GFP expression in the mushrooms Agaricus bisporus and Coprinus cinereus requires introns. Fungal Genet Biol 2005;42:191-9. https://doi.org/10.1016/j.fgb.2004.11.005
  67. Heneghan MN, Porta C, Zhang C, Burton KS, Challen MP, Bailey AM, Foster GD. Characterization of serine proteinase expression in Agaricus bisporus and Coprinopsis cinerea by using green fluorescent protein and the A. bisporus SPR1 promoter. Appl Environ Microbiol 2009;75:792-801. https://doi.org/10.1128/AEM.01897-08
  68. Lu Z, Kong X, Lu Z, Xiao M, Chen M, Zhu L, Shen Y, Hu X, Song S. Para-aminobenzoic acid (PABA) synthase enhances thermotolerance of mushroom Agaricus bisporus. PLoS One 2014;9:e91298. https://doi.org/10.1371/journal.pone.0091298
  69. Zheng Z, Huang C, Cao L, Xie C, Han R. Agrobacterium tumefaciens-mediated transformation as a tool for insertional mutagenesis in medicinal fungus Cordyceps militaris. Fungal Biol 2011;115:265-74. https://doi.org/10.1016/j.funbio.2010.12.011
  70. Cho JH, Lee SE, Chang WB, Cha JS. Agrobacterium-mediated transformation of the winter mushroom, Flammulina velutipes. Mycobiology 2006;34:104-7. https://doi.org/10.4489/MYCO.2006.34.2.104
  71. Park SY, van Peer AF, Jang KY, Shin PG, Park Y, Yoo YB, Park KM, Kong WS. Agrobacterium-mediated transformation using gill tissue of Flammulina velutipes. Kor J Mycol 2010;38:48-53. https://doi.org/10.4489/KJM.2010.38.1.048
  72. Okamoto T, Yamada M, Sekiya S, Okuhara T, Taguchi G, Inatomi S, Shimosaka M. Agrobacterium tumefaciens-mediated transformation of the vegetative dikaryotic mycelium of the cultivated mushroom Flammulina velutipes. Biosci Biotechnol Biochem 2010;74:2327-9. https://doi.org/10.1271/bbb.100398
  73. Shi L, Fang X, Li M, Mu D, Ren A, Tan Q, Zhao M. Development of a simple and efficient transformation system for the basidiomycetous medicinal fungus Ganoderma lucidum. World J Microbiol Biotechnol 2012;28:283-91. https://doi.org/10.1007/s11274-011-0818-z
  74. Hatoh K, Izumitsu K, Morita A, Shimizu K, Ohta A, Kawai M, Yamanaka T, Neda H, Ota Y, Tanaka C. Transformation of the mushroom species Hypsizigus marmoreus, Flammulina velutipes, and Grifola frondosa by an Agrobacterium-mediated method using a universal transformation plasmid. Mycoscience 2013;54:8-12. https://doi.org/10.1016/j.myc.2012.08.002
  75. Zhang JJ, Shi L, Chen H, Sun YQ, Zhao MW, Ren A, Chen MJ, Wang H, Feng ZY. An efficient Agrobacterium-mediated transformation method for the edible mushroom Hypsizygus marmoreus. Microbiol Res 2014;169:741-8. https://doi.org/10.1016/j.micres.2014.01.004
  76. Zubieta MP, da Silva Coelho I, de Queiroz MV, de Araujo EF. Agrobacterium tumefaciens-mediated genetic transformation of the ectomycorrhizal fungus Laccaria laccata. Ann Microbiol 2014;64:1875-8. https://doi.org/10.1007/s13213-014-0853-8
  77. Chung SJ, Kim S, Sapkota K, Choi BS, Shin C, Kim SJ. Expression of recombinant human interleukin-32 in Pleurotus eryngii. Ann Microbiol 2011;61:331-8. https://doi.org/10.1007/s13213-010-0146-9
  78. Kim KH, Kang YM, Im CH, Ali A, Kim SY, Je HJ, Kim MK, Rho HS, Lee HS, Kong WS, et al. Identification and functional analysis of pheromone and receptor genes in the B3 mating locus of Pleurotus eryngii. PLoS One 2014;9:e104693. https://doi.org/10.1371/journal.pone.0104693
  79. Ding Y, Liang S, Lei J, Chen L, Kothe E, Ma A. Agrobacterium tumefaciens mediated fused egfp-hph gene expression under the control of gpd promoter in Pleurotus ostreatus. Microbiol Res 2011;166:314-22. https://doi.org/10.1016/j.micres.2010.07.001
  80. Pardo AG, Hanif M, Raudaskoski M, Gorfer M. Genetic transformation of ectomycorrhizal fungi mediated by Agrobacterium tumefaciens. Mycol Res 2002;106:132-7. https://doi.org/10.1017/S0953756201005378
  81. Wang J, Guo L, Zhang K, Wu Q, Lin J. Highly efficient Agrobacterium-mediated transformation of Volvariella volvacea. Bioresour Technol 2008;99:8524-7. https://doi.org/10.1016/j.biortech.2008.03.007
  82. Chetty VJ, Ceballos N, Garcia D, Narvaez-Vasquez J, Lopez W, Orozco-Cardenas ML. Evaluation of four Agrobacterium tumefaciens strains for the genetic transformation of tomato (Solanum lycopersicum L.) cultivar Micro-Tom. Plant Cell Rep 2013;32:239-47. https://doi.org/10.1007/s00299-012-1358-1
  83. Stachel SE, Nester EW, Zambryski PC. A plant cell factor induces Agrobacterium tumefaciens vir gene expression. Proc Natl Acad Sci U S A 1986;83:379-83. https://doi.org/10.1073/pnas.83.2.379
  84. Schiestl RH, Petes TD. Integration of DNA fragments by illegitimate recombination in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 1991;88:7585-9. https://doi.org/10.1073/pnas.88.17.7585
  85. Lu S, Lyngholm L, Yang G, Bronson C, Yoder OC, Turgeon BG. Tagged mutations at the Tox1 locus of Cochliobolus heterostrophus by restriction enzyme-mediated integration. Proc Natl Acad Sci U S A 1994;91:12649-53. https://doi.org/10.1073/pnas.91.26.12649
  86. Yin HB, Wang T, Zheng P. Purification and properties of Lywallzyme from Trichoderma longibrachiatum Rifai. Guangzhou Chem Ind 2010:87-8.