Browse > Article
http://dx.doi.org/10.5941/MYCO.2015.43.1.1

Current Technologies and Related Issues for Mushroom Transformation  

Kim, Sinil (Division of Applied Life Science and Research Institute for Life Science, Gyeongsang National University)
Ha, Byeong-Suk (Division of Applied Life Science and Research Institute for Life Science, Gyeongsang National University)
Ro, Hyeon-Su (Division of Applied Life Science and Research Institute for Life Science, Gyeongsang National University)
Publication Information
Mycobiology / v.43, no.1, 2015 , pp. 1-8 More about this Journal
Abstract
Mushroom transformation requires a series of experimental steps, including generation of host strains with a desirable selective marker, design of vector DNA, removal of host cell wall, introduction of foreign DNA across the cell membrane, and integration into host genomic DNA or maintenance of an autonomous vector DNA inside the host cell. This review introduces limitations and obstacles related to transformation technologies along with possible solutions. Current methods for cell wall removal and cell membrane permeabilization are summarized together with details of two popular technologies, Agrobacterium tumefaciens-mediated transformation and restriction enzyme-mediated integration.
Keywords
Agrobacterium; Mushroom; Protoplast; REMI; Transformation;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Bauer R, Mendgen K, Oberwinkler F. Septal pore apparatus of the smut Ustacystis waldsteiniae. Myclogia 1995;87:18-24.   DOI
2 Rothstein RJ. One-step gene disruption in yeast. Methods Enzymol 1983;101:202-11.   DOI
3 Kim S, Song J, Choi HT. Genetic transformation and mutant isolation in Ganoderma lucidum by restriction enzymemediated integration. FEMS Microbiol Lett 2004;233:201-4.   DOI
4 Lin J, Zheng M, Wang J, Shu W, Guo L. Efficient transformation and expression of gfp gene in the edible mushroom Pleurotus nebrodensis. Prog Nat Sci 2008;18:819-24.   DOI
5 Kim JK, Park YJ, Kong WS, Kang HW. Highly efficient electroporation-mediated transformation into edible mushroom Flammulina velutipes. Mycobiology 2010;38:331-5.   DOI
6 Burns C, Gregory KE, Kirby M, Cheung MK, Riquelme M, Elliott TJ, Challen MP, Bailey A, Foster GD. Efficient GFP expression in the mushrooms Agaricus bisporus and Coprinus cinereus requires introns. Fungal Genet Biol 2005;42:191-9.   DOI
7 Kim KH, Kang YM, Im CH, Ali A, Kim SY, Je HJ, Kim MK, Rho HS, Lee HS, Kong WS, et al. Identification and functional analysis of pheromone and receptor genes in the B3 mating locus of Pleurotus eryngii. PLoS One 2014;9:e104693.   DOI
8 Nieuwenhuis BP, Debets AJ, Aanen DK. Sexual selection in mushroom-forming Basidiomycetes. Proc Biol Sci 2011;278:152-7.   DOI
9 Sato T, Yaegashi K, Ishii S, Hirano T, Kajiwara S, Shishido K, Enei H. Transformation of the edible basidiomycete Lentinus edodes by restriction enzyme-mediated integration of plasmid DNA. Biosci Biotechnol Biochem 1998;62:2346-50.   DOI
10 Hashizaki K, Taguchi H, Itoh C, Sakai H, Abe M, Saito Y, Ogawa N. Effects of poly(ethylene glycol) (PEG) chain length of PEG-lipid on the permeability of liposomal bilayer membranes. Chem Pharm Bull (Tokyo) 2003;51:815-20.   DOI
11 Heneghan MN, Porta C, Zhang C, Burton KS, Challen MP, Bailey AM, Foster GD. Characterization of serine proteinase expression in Agaricus bisporus and Coprinopsis cinerea by using green fluorescent protein and the A. bisporus SPR1 promoter. Appl Environ Microbiol 2009;75:792-801.   DOI
12 Zubieta MP, da Silva Coelho I, de Queiroz MV, de Araujo EF. Agrobacterium tumefaciens-mediated genetic transformation of the ectomycorrhizal fungus Laccaria laccata. Ann Microbiol 2014;64:1875-8.   DOI
13 Chetty VJ, Ceballos N, Garcia D, Narvaez-Vasquez J, Lopez W, Orozco-Cardenas ML. Evaluation of four Agrobacterium tumefaciens strains for the genetic transformation of tomato (Solanum lycopersicum L.) cultivar Micro-Tom. Plant Cell Rep 2013;32:239-47.   DOI
14 Wosten HA, Scholtmeijer K. Applications of hydrophobins: current state and perspectives. Appl Microbiol Biotechnol 2015;99:1587-97.   DOI
15 Nevalainen H, Peterson R. Making recombinant proteins in filamentous fungi: are we expecting too much? Front Microbiol 2014;5:75.
16 Su X, Schmitz G, Zhang M, Mackie RI, Cann IK. Heterologous gene expression in filamentous fungi. Adv Appl Microbiol 2012;81:1-61.   DOI
17 Singh SS, Wang H, Chan YS, Pan W, Dan X, Yin CM, Akkouh O, Ng TB. Lectins from edible mushrooms. Molecules 2014;20:446-69.   DOI
18 El Enshasy HA, Hatti-Kaul R. Mushroom immunomodulators: unique molecules with unlimited applications. Trend Biotechnol 2013;31:668-77.   DOI
19 Wasser SP. Medicinal mushroom science: current perspectives, advances, evidences, and challenges. Biomed J 2014;37:345-56.   DOI
20 Howard RJ. Ultrastructural analysis of hyphal tip cell growth in fungi: Spitzenkorper, cytoskeleton and endomembranes after freeze-substitution. J Cell Sci 1981;48:89-103.
21 Selitrennikoff CP. Antifungal proteins. Appl Environ Microbiol 2001;67:2883-94.   DOI
22 Shepherd VA, Orlovich DA, Ashford AE. Cell-to-cell transport via motile tubules in growing hyphae of a fungus. J Cell Sci 1993;105(Pt 4):1173-8.
23 Farrag RM. Ultrastructure, glutathione and low molecular weight proteins of Penicillium brevicompactum in response to cobalt. Pol J Microbiol 2009;58:327-38.   DOI
24 Muller WH, van Aelst AC, van der Krift TP, Boekhout T. Scanning electron microscopy of the septal pore cap of the basidiomycete Schizophyllum commune. Can J Microbiol 1994;40:879-83.   DOI
25 Hofsten B, Hofsten A. Ultrastructure of a thermotolerant Basidiomycete possibly suitable for production of food protein. Appl Microbiol 1974;27:1142-8.
26 Kothe E. Mating-type genes for basidiomycete strain improvement in mushroom farming. Appl Microbiol Biotechnol 2001;56:602-12.   DOI
27 Griffiths AJ. Natural plasmids of filamentous fungi. Microbiol Rev 1995;59:673-85.
28 Gems D, Johnstone IL, Clutterbuck AJ. An autonomously replicating plasmid transforms Aspergillus nidulans at high frequency. Gene 1991;98:61-7.   DOI
29 Schoberle TJ, Nguyen-Coleman CK, May GS. Plasmids for increased efficiency of vector construction and genetic engineering in filamentous fungi. Fungal Genet Biol 2013;58-59:1-9.   DOI
30 Binninger DM, Skrzynia C, Pukkila PJ, Casselton LA. DNAmediated transformation of the basidiomycete Coprinus cinereus. EMBO J 1987;6:835-40.
31 Tilby MJ. Tryptophan biosynthesis in Coprinus lagopus: a genetic analysis of mutants. J Gen Microbiol 1976;93:126-32.   DOI
32 Symington LS, Gautier J. Double-strand break end resection and repair pathway choice. Annu Rev Genet 2011;45:247-71.   DOI
33 Kiguchi T, Yanagi SO. Intraspecific heterokaryon and fruit body formation in Coprinus macrorhizus by protoplast fusion of auxotrophic mutants. Appl Microbiol Biotechnol 1985;22:121-7.
34 Lee K, Lee SE. Saccharomyces cerevisiae Sae2- and Tel1-dependent single-strand DNA formation at DNA break promotes microhomology-mediated end joining. Genetics 2007;176:2003-14.   DOI
35 Mezard C, Nicolas A. Homologous, homeologous, and illegitimate repair of double-strand breaks during transformation of a wild-type strain and a rad52 mutant strain of Saccharomyces cerevisiae. Mol Cell Biol 1994;14:1278-92.   DOI
36 Orr-Weaver TL, Szostak JW, Rothstein RJ. Yeast transformation: a model system for the study of recombination. Proc Natl Acad Sci U S A 1981;78:6354-8.   DOI
37 Ishibashi K, Suzuki K, Ando Y, Takakura C, Inoue H. Nonhomologous chromosomal integration of foreign DNA is completely dependent on MUS-53 (human Lig4 homolog) in Neurospora. Proc Natl Acad Sci U S A 2006;103:14871-6.   DOI
38 Ninomiya Y, Suzuki K, Ishii C, Inoue H. Highly efficient gene replacements in Neurospora strains deficient for nonhomologous end-joining. Proc Natl Acad Sci U S A 2004;101:12248-53.   DOI
39 Nakazawa T, Ando Y, Kitaaki K, Nakahori K, Kamada T. Efficient gene targeting in ${\Delta}$Cc.ku70 or ${\Delta}$Cc.lig4 mutants of the agaricomycete Coprinopsis cinerea. Fungal Genet Biol 2011;48:939-46.   DOI
40 Leem YE, Kim SJ, Ross IK, Choi HT. Transformation and laccase mutant isolation in Coprinus congregatus by restriction enzyme-mediated integration. FEMS Microbiol Lett 1999;172: 35-40.   DOI
41 Irie T, Sato T, Saito K, Honda Y, Watanabe T, Kuwahara M, Enei H. Construction of a homologous selectable marker gene for Lentinula edodes transformation. Biosci Biotechnol Biochem 2003;67:2006-9.   DOI
42 Maehara T, Yoshida M, Ito Y, Tomita S, Takabatake K, Ichinose H, Kaneko S. Development of a gene transfer system for the mycelia of Flammulina velutipes Fv-1 strain. Biosci Biotechnol Biochem 2010;74:1126-8.   DOI
43 Hirano T, Sato T, Yaegashi K, Enei H. Efficient transformation of the edible basidiomycete Lentinus edodes with a vector using a glyceraldehyde-3-phosphate dehydrogenase promoter to hygromycin B resistance. Mol Gen Genet 2000;263:1047-52.   DOI
44 Nakade K, Watanabe H, Sakamoto Y, Sato T. Gene silencing of the Lentinula edodes lcc1 gene by expression of a homologous inverted repeat sequence. Microbiol Res 2011;166:484-93.   DOI
45 Noh W, Kim SW, Bae DW, Kim JY, Ro HS. Genetic introduction of foreign genes to Pleurotus eryngii by restriction enzyme-mediated integration. J Microbiol 2010;48:253-6.   DOI
46 Yin Y, Liu Y, Jin H, Wang S, Zhao S, Geng X, Li M, Xu F. Polyethylene glycol-mediated transformation of fused egfphph gene under the control of gpd promoter in Pleurotus eryngii. Biotechnol Lett 2012;34:1895-900.   DOI
47 Irie T, Honda Y, Hirano T, Sato T, Enei H, Watanabe T, Kuwahara M. Stable transformation of Pleurotus ostreatus to hygromycin B resistance using Lentinus edodes GPD expression signals. Appl Microbiol Biotechnol 2001;56:707-9.   DOI
48 Irie T, Honda Y, Watanabe T, Kuwahara M. Efficient transformation of filamentous fungus Pleurotus ostreatus using single-strand carrier DNA. Appl Microbiol Biotechnol 2001;55:563-5.   DOI
49 Joh JH, Kim BG, Chu KS, Kong WS, Yoo YB, Lee CS. The efficient transformation of Pleurotus ostreatus using REMI method. Mycobiology 2003;31:32-5.   DOI
50 Peng M, Singh NK, Lemke PA. Recovery of recombinant plasmids from Pleurotus ostreatus transformants. Curr Genet 1992;22:53-9.   DOI
51 Li G, Li R, Liu Q, Wang Q, Chen M, Li B. A highly efficient polyethylene glycol-mediated transformation method for mushrooms. FEMS Microbiol Lett 2006;256:203-8.   DOI
52 Kim K, Leem Y, Kim K, Kim K, Choi HT. Transformation of the medicinal basidiomycete Trametes versicolor to hygromycin B resistance by restriction enzyme mediated integration. FEMS Microbiol Lett 2002;209:273-6.   DOI
53 Kitamura K, Kaneko T, Yamamoto Y. Lysis of viable yeast cells by enzymes of Arthrobacter luteus. Arch Biochem Biophys 1971;145:402-4.   DOI
54 Gietz RD, Schiestl RH, Willems AR, Woods RA. Studies on the transformation of intact yeast cells by the LiAc/SS.DNA/ PEG procedure. Yeast 1995;11:355-60.   DOI
55 Brzobohaty B, Kovac L. Factors enhancing genetic transformation of intact yeast cells modify cell wall porosity. J Gen Microbiol 1986;132:3089-93.
56 Pham TA, Kawai S, Murata K. Visualization of the synergistic effect of lithium acetate and single-stranded carrier DNA on Saccharomyces cerevisiae transformation. Curr Genet 2011;57:233-9.   DOI
57 van de Rhee MD, Graca PM, Huizing HJ, Mooibroek H. Transformation of the cultivated mushroom, Agaricus bisporus, to hygromycin B resistance. Mol Gen Genet 1996;250:252-8.
58 Kuo CY, Chou SY, Hseu RS, Huang CT. Heterologous expression of EGFP in enoki mushroom Flammulina velutipes. Bot Stud 2010;51:303-9.
59 Sun L, Cai H, Xu W, Hu Y, Gao Y, Lin Z. Efficient transformation of the medicinal mushroom Ganoderma lucidum. Plant Mol Biol Rep 2001;19:383-4.   DOI
60 Sun L, Cai H, Xu W, Hu Y, Lin Z. CaMV 35S promoter directs ${\beta}$-glucuronidase expression in Ganoderma lucidum and Pleurotus citrinopileatus. Mol Biotechnol 2002;20:239-44.   DOI
61 Kuo CY, Huang CT. A reliable transformation method and heterologous expression of ${\beta}$-glucuronidase in Lentinula edodes. J Microbiol Methods 2008;72:111-5.   DOI
62 Sunagawa M, Magae Y. Transformation of the edible mushroom Pleurotus ostreatus by particle bombardment. FEMS Microbiol Lett 2002;211:143-6.   DOI
63 Sunagawa M, Murata H, Miyazaki Y, Nakamura M. Transformation of Lyophyllum decastes by particle bombardment. Mycoscience 2007;48:195-7.   DOI
64 Lai EM, Kado CI. The T-pilus of Agrobacterium tumefaciens. Trends Microbiol 2000;8:361-9.   DOI
65 Cardoza RL, Vizcaino JA, Hermosa MR, Monte E, Gutierrez S. A comparison of the phenotypic and genetic stability of recombinant Trichoderma spp. generated by protoplast- and Agrobacterium-mediated transformation. J Microbiol 2006;44:383-95.
66 De Groot MJ, Bundock P, Hooykaas PJ, Beijersbergen AG. Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Biotechnol 1998;16:839-42.   DOI
67 Michielse CB, Ram AF, Hooykaas PJ, Hodel CA. Role of bacterial virulence proteins in Agrobacterium-mediated transformation of Aspergillus awamori. Fungal Genet Biol 2004;41:571-8.   DOI
68 Ruiz-Diez B. Strategies for the transformation of filamentous fungi. J Appl Microbiol 2002;92:189-95.   DOI
69 Chen X, Stone M, Schlagnhaufer C, Romaine CP. A fruiting body tissue method for efficient Agrobacterium-mediated transformation of Agaricus bisporus. Appl Environ Microbiol 2000;66:4510-3.   DOI
70 Mikosch TS, Lavrijssen B, Sonnenberg AS, van Griensven LJ. Transformation of the cultivated mushroom Agaricus bisporus (Lange) using T-DNA from Agrobacterium tumefaciens. Curr Genet 2001;39:35-9.   DOI
71 Lu Z, Kong X, Lu Z, Xiao M, Chen M, Zhu L, Shen Y, Hu X, Song S. Para-aminobenzoic acid (PABA) synthase enhances thermotolerance of mushroom Agaricus bisporus. PLoS One 2014;9:e91298.   DOI
72 Zheng Z, Huang C, Cao L, Xie C, Han R. Agrobacterium tumefaciens-mediated transformation as a tool for insertional mutagenesis in medicinal fungus Cordyceps militaris. Fungal Biol 2011;115:265-74.   DOI
73 Cho JH, Lee SE, Chang WB, Cha JS. Agrobacterium-mediated transformation of the winter mushroom, Flammulina velutipes. Mycobiology 2006;34:104-7.   DOI
74 Park SY, van Peer AF, Jang KY, Shin PG, Park Y, Yoo YB, Park KM, Kong WS. Agrobacterium-mediated transformation using gill tissue of Flammulina velutipes. Kor J Mycol 2010;38:48-53.   DOI
75 Okamoto T, Yamada M, Sekiya S, Okuhara T, Taguchi G, Inatomi S, Shimosaka M. Agrobacterium tumefaciens-mediated transformation of the vegetative dikaryotic mycelium of the cultivated mushroom Flammulina velutipes. Biosci Biotechnol Biochem 2010;74:2327-9.   DOI
76 Shi L, Fang X, Li M, Mu D, Ren A, Tan Q, Zhao M. Development of a simple and efficient transformation system for the basidiomycetous medicinal fungus Ganoderma lucidum. World J Microbiol Biotechnol 2012;28:283-91.   DOI
77 Hatoh K, Izumitsu K, Morita A, Shimizu K, Ohta A, Kawai M, Yamanaka T, Neda H, Ota Y, Tanaka C. Transformation of the mushroom species Hypsizigus marmoreus, Flammulina velutipes, and Grifola frondosa by an Agrobacterium-mediated method using a universal transformation plasmid. Mycoscience 2013;54:8-12.   DOI
78 Ding Y, Liang S, Lei J, Chen L, Kothe E, Ma A. Agrobacterium tumefaciens mediated fused egfp-hph gene expression under the control of gpd promoter in Pleurotus ostreatus. Microbiol Res 2011;166:314-22.   DOI
79 Zhang JJ, Shi L, Chen H, Sun YQ, Zhao MW, Ren A, Chen MJ, Wang H, Feng ZY. An efficient Agrobacterium-mediated transformation method for the edible mushroom Hypsizygus marmoreus. Microbiol Res 2014;169:741-8.   DOI
80 Chung SJ, Kim S, Sapkota K, Choi BS, Shin C, Kim SJ. Expression of recombinant human interleukin-32 in Pleurotus eryngii. Ann Microbiol 2011;61:331-8.   DOI
81 Pardo AG, Hanif M, Raudaskoski M, Gorfer M. Genetic transformation of ectomycorrhizal fungi mediated by Agrobacterium tumefaciens. Mycol Res 2002;106:132-7.   DOI
82 Wang J, Guo L, Zhang K, Wu Q, Lin J. Highly efficient Agrobacterium-mediated transformation of Volvariella volvacea. Bioresour Technol 2008;99:8524-7.   DOI
83 Stachel SE, Nester EW, Zambryski PC. A plant cell factor induces Agrobacterium tumefaciens vir gene expression. Proc Natl Acad Sci U S A 1986;83:379-83.   DOI
84 Schiestl RH, Petes TD. Integration of DNA fragments by illegitimate recombination in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 1991;88:7585-9.   DOI
85 Lu S, Lyngholm L, Yang G, Bronson C, Yoder OC, Turgeon BG. Tagged mutations at the Tox1 locus of Cochliobolus heterostrophus by restriction enzyme-mediated integration. Proc Natl Acad Sci U S A 1994;91:12649-53.   DOI
86 Yin HB, Wang T, Zheng P. Purification and properties of Lywallzyme from Trichoderma longibrachiatum Rifai. Guangzhou Chem Ind 2010:87-8.