Browse > Article
http://dx.doi.org/10.4014/jmb.1407.07043

Improvement of a Sulfolobus-E. coli Shuttle Vector for Heterologous Gene Expression in Sulfolobus acidocaldarius  

Hwang, Sungmin (Department of Microbiology, College of Natural Sciences, Pusan National University)
Choi, Kyoung-Hwa (Department of Microbiology, College of Natural Sciences, Pusan National University)
Yoon, Naeun (Department of Microbiology, College of Natural Sciences, Pusan National University)
Cha, Jaeho (Department of Microbiology, College of Natural Sciences, Pusan National University)
Publication Information
Journal of Microbiology and Biotechnology / v.25, no.2, 2015 , pp. 196-205 More about this Journal
Abstract
A Sulfolobus-E. coli shuttle vector for an efficient expression of the target gene in S. acidocaldarius strain was constructed. The plasmid-based vector pSM21 and its derivative pSM21N were generated based on the pUC18 and Sulfolobus cryptic plasmid pRN1. They carried the S. solfataricus P2 pyrEF gene for the selection marker, a multiple cloning site (MCS) with C-terminal histidine tag, and a constitutive promoter of the S. acidocaldarius gdhA gene for strong expression of the target gene, as well as the pBR322 origin and ampicillin-resistant gene for E. coli propagation. The advantage of pSM21 over other Sulfolobus shuttle vectors is that it contains a MCS and a histidine tag for the simple and easy cloning of a target gene as well as one-step purification by histidine affinity chromatography. For successful expression of the foreign genes, two genes from archaeal origins (PH0193 and Ta0298) were cloned into pSM21N and the functional expression was examined by enzyme activity assay. The recombinant PH0193 was successfully expressed under the control of the gdhA promoter and purified from the cultures by His-tag affinity chromatography. The yield was approximately 1 mg of protein per liter of cultures. The enzyme activity measurements of PH0913 and Ta0298 revealed that both proteins were expressed as an active form in S. acidocaldarius. These results indicate that the pSM21N shuttle vector can be used for the functional expression of foreign archaeal genes that form insoluble aggregates in the E. coli system.
Keywords
Archaea; constitutive promoter; enzyme activity; protein expression; shuttle vector; Sulfolobus acidocaldarius;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Cannio R, Contursi P, Rossi M, Bartolucci S. 2001. Thermoadaptation of a mesophilic hygromycin B phosphotransferase by directed evolution in hyperthermophilic Archaea: selection of a stable genetic marker for DNA transfer into Sulfolobus solfataricus. Extremophiles 5: 153-159.   DOI
2 Choi KH, Hwang S, Cha J. 2013. Identification and characterization of MalA in the maltose/maltodextrin operon of Sulfolobus acidocaldarius DSM639. J. Bacteriol. 195: 1789-1799.   DOI   ScienceOn
3 Condò I, Ciammaruconi A, Benelli D, Ruggero D, Londei P. 1999. Cis-acting signals controlling translational initiation in the thermophilic archaeon Sulfolobus solfataricus. Mol. Microbiol. 34: 377-384.   DOI   ScienceOn
4 Duggin IG, Bell SD. 2006. The chromosome replication machinery of the archaeon Sulfolobus solfataricus. J. Biol. Chem. 281: 15029-15032.   DOI   ScienceOn
5 Grogan DW. 2003. Cytosine methylation by the SuaI restriction-modification system: implications for genetic fidelity in a hyperthermophilic archaeon. J. Bacteriol. 185: 4657-4661.   DOI
6 Kort JC, Esser D, Pham TK, Noirel J, Wright PC, Siebers B. 2013. A cool tool for hot and sour Archaea: proteomics of Sulfolobus solfataricus. Proteomics 13: 2831-2850.
7 Jaubert C1, Danioux C, Oberto J, Cortez D, Bize A, Krupovic M, et al. 2013. Genomics and genetics of Sulfolobus islandicus LAL14/1, a model hyperthermophilic archaeon. Open Biol. 3: 130010.   DOI   ScienceOn
8 Jonuscheit M, Martusewitsch E, Stedman KM, Schleper C. 2003. A reporter gene system for the hyperthermophilic archaeon Sulfolobus solfataricus based on a selectable and integrative shuttle vetor. Mol. Microbiol. 48: 1241-1252.   DOI   ScienceOn
9 Kawarabayasi Y, Hino Y, Horikawa H, Jin-no K, Takahashi M, Sekine M, et al. 2001. Complete genome sequence of an aerobic thermoacidophilic crenarchaeon, Sulfolobus tokodaii strain 7. DNA Res. 8: 123-140.   DOI
10 Kurosawa N, Grogan DW. 2005. Homologous recombination of exogenous DNA with the Sulfolobus acidocaldarius genome: properties and uses. FEMS Microbiol. Lett. 253: 141-149.   DOI   ScienceOn
11 Liebl W, Feil R, Gabelsberger J, Kellermann J, Schleifer KH. 1992. Purification and characterization of a novel thermostable 4-α-glucanotransferase of Thermotoga maritima cloned in Escherichia coli. Eur. J. Biochem. 207: 81-88.   DOI   ScienceOn
12 Ortmann AC, Brumfield SK, Walther J, McInnerney K, Brouns SJ, van de Werken HJ, et al. 2008. Transcriptome analysis of infection of the archaeon Sulfolobus solfataricus with Sulfolobus turreted icosahedral virus. J. Virol. 82: 4874-4883.   DOI   ScienceOn
13 Prangishvili DA, Vashakidze RP, Chelidze MG, Gabriadze IY. 1985. A restriction endonuclease SuaI from the thermoacidophilic archaebacterium Sulfolobus acidocaldarius. FEBS Lett. 192: 57-60.   DOI   ScienceOn
14 Snijders AP, Walther J, Peter S, Kinnman I, de Vos MG, van de Werken HJ, et al. 2006. Reconstruction of central carbon metabolism in Sulfolobus solfataricus using a two-dimensional gel electrophoresis map, stable isotope labelling and DNA microarray analysis. Proteomics 6: 1518-1529.   DOI   ScienceOn
15 Reilly MS, Grogan DW. 2001. Characterization of intragenic recombination in a hyperthermophilic archaeon via conjugational DNA exchange. J. Bacteriol. 183: 2943-2946.   DOI   ScienceOn
16 Allers T, Mevarech M. 2005. Archaeal genetics - the third way. Nat. Rev. Genet. 6: 58-73.   DOI   ScienceOn
17 Zheng T, Huang Q, Zhang C, Ni J, She Q, Shen Y. 2012. Development of a simvastatin selection marker for a hyperthermophilic acidophile, Sulfolobus islandicus. Appl. Environ. Microbiol. 78: 568-574.   DOI
18 Albers SV, Driessen AJM. 2008. Conditions for gene disruption by homologous recombination of exogenous DNA into the Sulfolobus solfataricus genome. Archaea 2: 145-149.   DOI   ScienceOn
19 Arnold HP, She Q, Phan H, Stedman K, Prangishvili D, Holz I, et al. 1999. The genetic element pSSVx of the extremely thermophilic crenarchaeon Sulfolobus is a hybrid between a plasmid and a virus. Mol. Microbiol. 34: 217-226.   DOI   ScienceOn
20 Albers SV, Jonuscheit M, Dinkelaker S, Urich T, Kletzin A, Tampé R, et al. 2006. Production of recombinant and tagged proteins in the hyperthermophilic archaeon Sulfolobus solfataricus. Appl. Environ. Microbiol. 72: 102-111.   DOI   ScienceOn
21 Bell SD, Jaxel C, Nadal M, Kosa PF, Jackson SP. 1998. Temperature, template topology, and factor requirements of archaeal transcription. Proc. Natl. Acad. Sci. USA 95: 15218-15222.   DOI
22 Aravalli RN, Garrett RA. 1997. Shuttle vectors for hyperthermophilic archaea. Extremophiles 1: 183-191.   DOI
23 Aucelli T, Contursi P, Girfoglio M, Rossi M, Cannio R. 2006. A spreadable, non-integrative and high copy number shuttle vector for Sulfolobus solfataricus based on the genetic element pSSVx from Sulfolobus islandicus. Nucleic Acids Res. 34: e114.   DOI   ScienceOn
24 Barry RC, Young MJ, Stedman KM, Dratz EA. 2006. Proteomic mapping of the hyperthermophilic and acidophilic archaeon Sulfolobus solfataricus P2. Electrophoresis 27: 2970-2983.   DOI   ScienceOn
25 Berkner S, Grogan D, Albers SV, Lipps G. 2007. Small multicopy, non-integrative shuttle vectors based on the plasmid pRN1 for Sulfolobus acidocaldarius and Sulfolobus solfataricus, model organisms of the (cren-)archaea. Nucleic Acids Res. 35: e88.   DOI
26 Berkner S, Lipps G. 2008. Genetic tools for Sulfolobus spp.: vectors and first applications. Arch. Microbiol. 190: 217-230.   DOI
27 Chen L, Brügger K, Skovgaard M, Redder P, She Q, Torarinsson E, et al. 2005. The genome of Sulfolobus acidocaldarius, a model organism of the Crenarchaeota. J. Bacteriol. 187: 4992-4999.   DOI   ScienceOn
28 Berkner S, Wlodkowski A, Albers SV, Lipps G. 2010. Inducible and constitutive promoters for genetic systems in Sulfolobus acidocaldarius. Extremophiles 14: 249-259.   DOI
29 Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.   DOI   ScienceOn
30 Seo SH, Choi KH, Hwang S, Kim J, Park CS, Rho JR, Cha J. 2011. Characterization of the catalytic and kinetic properties of a thermostable Thermoplasma acidophilum α-glucosidase and its transglycoslyation reaction with arbutin. J. Mol. Cat. B Enz. 72: 305-312.   DOI   ScienceOn
31 She Q, Singh RK, Confalonieri F, Zivanovic Y, Allard G, Awayez MJ, et al. 2009. The complete genome of the crenarchaeon Sulfolobus solfataricus P2. Proc. Natl. Acad. Sci. USA 98: 7835-7840.   DOI   ScienceOn
32 Stedman KM, Schleper C, Rumpf E, Zillig W. 1999. Genetic requirements for the function of the archaeal virus SSV1 in Sulfolobus solfataricus: construction and testing of viral shuttle vectors. Genetics 152: 1397-1405.
33 Wagner M, Berkner S, Ajon M, Driessen AJ, Lipps G, Albers SV. 2009. Expanding and understanding the genetic toolbox of the hyperthermophilic genus Sulfolobus. Biochem. Soc. Trans. 37: 97-101.   DOI   ScienceOn
34 Wagner M, van Wolferen M, Wagner A, Lassak K, Meyer BH, Reimann J, Albers SV. 2012. Versatile genetic tool box for the crenarchaeote Sulfolobus acidocaldarius. Front. Microbiol. 3: 214.   DOI   ScienceOn
35 Wagner M, Wagner A, Ma X, Kort JC, Ghosh A, Rauch B, et al. 2014. Investigation of the malE promoter and MalR, a positive regulator of the maltose regulon, for an improved expression system in Sulfolobus acidocaldarius. Appl. Environ. Microbiol. 80: 1072-1081.   DOI   ScienceOn
36 Worthington P, Hoang V, Perez-Pomares F, Blum P. 2003. Targeted disruption of the α-amylase gene in the hyperthermophilic archaeon Sulfolobus solfataricus. J. Bacteriol. 185: 482-488.   DOI