• Title/Summary/Keyword: Marine alga

Search Result 222, Processing Time 0.025 seconds

Anti-inflammatory Activity on LPS-stimulated in vitro RAW 264.7 Cells and in vivo Zebrafish of Heterosigma akshiwo

  • Kim, Junseong;Choi, Youn Kyung;Lee, Ji-Hyeok;Kim, Seo-Young;Kim, Hyun-Soo;Jeon, You-Jin;Heo, Soo-Jin
    • Journal of Chitin and Chitosan
    • /
    • v.22 no.3
    • /
    • pp.185-193
    • /
    • 2017
  • Red tide Heterosigma akashiwo (H. akashiwo), a microscopic alga of the class Raphidophyceae, causes extensive damage to all marine ecosystems. It is essential to reduce the damage to marine ecosystems for them to be used as a resource. In this study, we used organic solvent fractionation to obtain an ethyl acetate-methanol extract from H. akashiwo (HAEM80) and then evaluated its anti-inflammatory activity in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells and a zebrafish model. HAME80 markedly inhibited the production of nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$). It also down-regulated the protein expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) and decreased the secretion of interleukin-$1{\beta}$ ($IL-1{\beta}$) in LPS-stimulated RAW 264.7 cells. HAME80 reduced yolk edema and improved the survival rate of LPS-stimulated zebrafish embryos; in addition, the extract significantly reduced the production of ROS and NO and attenuated cell death in this model. Gas chromatography-mass spectrometry (GC-MS) of the extract was used to confirm the identity of peaks 1-20. Taken together, our data suggest that H. akashiwo is a beneficial anti-inflammatory agent.

Chromatographic Determination of Amino Acids in Nonprotein and Protein Fraction Of Undaria Pinnatifida

  • Kwon, Tai-Wan;Lee, Tae-Young
    • Applied Biological Chemistry
    • /
    • v.1
    • /
    • pp.55-61
    • /
    • 1960
  • The amino acid compositions of the protein and the nonprotein fractions obtained from a marine brown alga, 'Undaria pinnatifida' were determined by use of Ion Exchange Column Chromatography. The protein nitrogen in the alga was about ten times of the nonprotein nitrogen. Nonprotein fraction obtained from the extraction with 80 percent ethanol contains considerable amount of tree citrulline. Alanine content in the alga was the highest (about 1 per cent in dry weight) and one third of which was found in free state. The amino acid composition of the alga was well balanced and the content of the essential amino acids were relatively higher, than soybean protein. In addition, several peptide like substances were fractionated from nonprotein fraction, in which one way identified as a naturally occurring new tripeptide composed of alanine, glutamic acid and aspartic acid, and the remaining unknown substances are under investigation for the further information.

  • PDF

Overview of UV-B Effects on Marine Algae (자외선이 해조류에 미치는 영향에 관한 고찰)

  • 한태준
    • Korean Journal of Environmental Biology
    • /
    • v.17 no.1
    • /
    • pp.1-9
    • /
    • 1999
  • Numerous observations revealed strong evidence of increased middle ultraviolet radiation or UV-B (280 ~ 320 nm) at the earth's surface resulting from stratospheric ozone depletion. UV is the waveband of electromagnetic radiation which is strongly absorbed by nucleic acids and proteins, thus causing damage to living systems. It has been recorded in the East Sea, Korea that solar UV-B impinging on the ocean surface penetrates seawater to significant depths. Recent researches showed that exposure to UV-B for as short as 2h at the ambient level (2.0 Wm$^{-2}$) decreased macroalgal growth and photosynthesis and destroyed photosynthetic pigments. These may suggest that UV-B could be an important environmental factor to determine algal survival and distribution. Some adaptive mechanisms to protect macroalgae from UV-damage have been found, which include photoreactivation and formation of UV-absorbing pigments. Post-illumination of visible light mitigated UV-induced damage in laminarian young sporophytes with blue the most effective waveband. The existence of UV-B absorbing pigments has been recognized in the green alga, Ulva pertusa and the red alga, Pachymeniopsis sp., which is likely to exert protective function for photosynthetic pigments inside the thalli from UV-damage. Further studies are however needed to confirm that these mechanisms are of general occurrence in seaweeds. Macroalgae together with phytoplankton are the primary producers to incorporate about 100 Gt of carbons per year, and provide half of the total biomass on the earth. UV-driven reduction in macroalgal biomass, if any, would therefore cause deleterious effects on marine ecosystem. The ultimate impacts of increasing UV-B flux due to ozone destruction are still unknown, but the impression from UV studies made so far seems to highlight the importance of setting up long-term monitoring system for us to be able to predict and detect the onset of large -scale deterioration in aquatic ecosystem.

  • PDF

Antimalarial activity of marine alga aganist P. falciparum in vitro (열대열 말라리아에 대하여 항 말라리아 효과가 있는 해조류에 대한 연구)

  • Kim Hye Sook;Wataya Yusuke;Takaya Yoshiaki;Ahnn Joo Hong;Jeon Byung Hun;Shin Ho Joon;Shin Chang Ho;Kim Yong Man;Park Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.5
    • /
    • pp.1321-1324
    • /
    • 2003
  • To produce anti-malarial drugs, natural products were extracted from 18 species of marine algae by various mechanical methods. Twelve species of marine algae were found to have antiplasmodial activity by inhibiting the growth of the chloroquine-resistant Plasmodium falciparum strain FCR-3 with EC/sub 50/ values less than 100 ㎍/㎖. The methanol extract of Neoholmeria japonica had the strongest antiplasmodial activity with EC/sub 50/ value of 62 ㎍/㎖.

Isolation and Antioxidant Activity of Methyl Aconitates from Arctic Red Alga Polysiphonia stricta (극지 홍조류 Polysiphonia stricta에서 분리된 methyl trans-aconitate 유도체들과 항산화 활성)

  • Lee, Jung Im;Kong, Chang-Suk;Baek, Seung Oh;Seo, Youngwan
    • Ocean and Polar Research
    • /
    • v.36 no.3
    • /
    • pp.247-254
    • /
    • 2014
  • In our continuing study on the antioxidant activity of Polysiphonia stricta, its crude extract was fractionated into n-hexane, 85% aqueous methanol (85% aq.MeOH), n-butanol (n-BuOH), and water fractions according to solvent polarity. The solvent fractions were evaluated for their potential to inhibit lipid peroxidation and reactive oxygen species (ROS) production in HT 1080 cells. The n-BuOH fraction most strongly inhibited both lipid peroxidation and ROS production in HT 1080 cells. The n-BuOH fraction was further separated by repeated silica gel column chromatography and RP-HPLC to give methyl aconitates (2 and 3). The chemical structure of isolated compounds was determinated by NMR spectral analysis.

Antioxidative Effect of Proteolytic Hydrolysates from Ecklonia cava on Radical Scavenging Using ESR and $H_2O_2$-induced DNA Damage

  • Heo, Soo-Jin;Park, Pyo-Jam;Park, Eun-Ju;Cho, So-Mi K.;Kim, Se-Kwon;Jeon, You-Jin
    • Food Science and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.614-620
    • /
    • 2005
  • The antioxidative effect of Ecklonia cava, a brown marine alga, was investigated on radical scavenging, including 1,1-diphenyl-2-picrylhydrazyl (DPPH), and hydroxyl and alkyl radicals, using an electron spin resonance (ESR) technique, and on the inhibition of $H_2O_2$-induced DNA damage using comet assay. E. cava was enzymatically hydrolyzed with five food industrial proteases (Alcalase, Flavourzyme, Kojizyme, Neutrase and Protamex) to prepare water-soluble extracts. All the proteolytic hydrolysates exhibited strong dose-dependent radical scavenging activities (above 80%) at a concentration of $2.5\;{\mu}g/mL$. Kojizyme extract (obtained by proteolytic hydrolysation of E. cava with Kojizyme) showed the highest hydroxyl radical scavenging activity of around 98%. In addition, the $H_2O_2$-induced DNA damage was determined using a comet assay, which was quantified by measuring the tail length. Reduction of DNA damage increased with increasing concentrations of Kojizyme extract from E. cava. These results indicated that E. cava has a potential as a valuable natural antioxidative source.

Comparison of fucosterol content in algae using high-performance liquid chromatography

  • Lee, Jeong Min;Jeon, Jae Hyuk;Yim, Mi-Jin;Choi, Grace;Lee, Myeong Seok;Park, Yun Gyeong;Lee, Dae-Sung
    • Fisheries and Aquatic Sciences
    • /
    • v.23 no.3
    • /
    • pp.9.1-9.6
    • /
    • 2020
  • Background: Fucosterol is a compound commonly found in algae that has various biological activities. The purpose of this study was to develop a high-performance liquid chromatography (HPLC) validation method for fucosterol and to compare the fucosterol contents of 11 algal species from Ulleungdo, Korea. Method: In this study, we successfully isolated and identified fucosterol from a 70% EtOH extract of Sargassum miyabei, and subsequently conducted specificity, linearity, limit of detection (LOD), limit of quantification (LOQ), accuracy, and precision analyses for development of an HPLC validation method. Fucosterol contents were compared using the established HPLC validation conditions. Results: We successfully isolated fucosterol from a 70% EtOH extract of S. miyabei and identified it based on spectroscopic analysis. On the basis of HPLC validation using the fucosterol isolated from S. miyabei, we confirmed specificity (8.5 min), linearity (R2 = 0.9998), LOD (3.20 ㎍ mL-1), LOQ (9.77 ㎍ mL-1), accuracy (intra-day and inter-day variation, 90-110%), and precision (RSD, 1.07%). Fucosterol contents in the 11 assessed algal species ranged from 0.22 to 81.67 mg g-1, with the highest content being recorded in a 70% EtOH extract of Desmarestia tabacoides (81.67 mg g-1), followed by that of Agarum clathratum (78.70 mg g-1). Conclusions: The results indicate that 70% EtOH extracts of D. tabacoides and A. clathratum containing fucosterol with various effects can be potential alternative sources of fucosterol.

Screening on Receptor Tyrosine Kinase Inhibitory Activity of Marine Algae-Derived Symbiotic Microorganisms (해조류 공생미생물의 Receptor Tyrosine Kinase 억제효능 검색)

  • Yun, Keum-Ja;Yang, Guohua;Feng, Zhile;Nenkep, Viviane N.;Xavier, Siwe-Noundou;Leutou, Alain S.;Kim, Gun-Do;Cho, Hee-Yeong;Choi, Hong-Dae;Son, Byeng-Wha
    • Korean Journal of Pharmacognosy
    • /
    • v.41 no.1
    • /
    • pp.43-47
    • /
    • 2010
  • In order to screen new receptor tyrosine kinase inhibitor which is expected to be anticancer drug lead, we have investigated receptor tyrosine kinase inhibitory activity on the marine alga-derived symbiotic microorganisms (500 strains). The significant activities (over 70% inhibition at $10\;{\mu}g/ml$) were observed in the extracts of ten strains (Strain No.: MFA018, 019, 206, 242, 325, 335, 343, 344, 354, 356), isolated from marine red algae, five strains (Strain No.: MFA030, 126, 213, 324, 339), isolated from the brown algae, and one strain (Strain No.: MFA272), isolated from the marine green algae, respectively. Among the active strains, MFA019 and 356 showed strong receptor tyrosine kinase inhibitory activity with $IC_{50}$ values of 0.6 and $0.9\;{\mu}g/ml$, respectively.

Effect of Dietary Supplementation with Alga (Hizikia fusiformis and Ecklonia cava) on the Non-specific Immune Responses of Parrot Fish Oplegnathus fasciatus (사료 내 해조류(톳, 감태) 첨가가 돌돔(Oplegnathus fasciatus) 치어의 비특이적 면역반응에 미치는 영향)

  • Song, Jin-Woo;Jang, Ji-Woong;Kim, Sung-Sam;Oh, Dae-Han;Cha, Ji-Hoon;Lee, Kyeong-Jun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.44 no.4
    • /
    • pp.332-338
    • /
    • 2011
  • Two feeding trials were conducted to determine the effects of dietary supplementation with Hizikia fusiformis or Ecklonia cava on the non-specific immune responses of parrot fish Oplegnathus fasciatus. Fish were fed experimental diets to which H. fusiformis or E. cava powder were added to final concentrations of 0, 2, 4 and 6%, respectively. After feeding for two weeks, phagocytic activity was significantly higher in fish fed diets containing H. fusiformis, but not E. cava, than in fish fed the basal diet. Lysozyme activity was significantly increased in the fish fed diets containing 6% H. fusiformis and E. cava. Myeloperoxidase activity was also significantly higher in fish fed diets containing 2 and 4% H. fusiformis, as compared to the basal diet, but not in those fish fed E. cava. These two studies indicate that dietary supplementation with H. fusiformis or E. cava could enhance the innate immune responses of parrot fish during their growth stage.

Inhibition of inflammatory responses elicited by urban fine dust particles in keratinocytes and macrophages by diphlorethohydroxycarmalol isolated from a brown alga Ishige okamurae

  • Fernando, I.P. Shanura;Kim, Hyun-Soo;Sanjeewa, K.K. Asanka;Oh, Jae-Young;Jeon, You-Jin;Lee, Won Woo
    • ALGAE
    • /
    • v.32 no.3
    • /
    • pp.261-273
    • /
    • 2017
  • Fine dust (FD) particles have become a major contributor to air pollution causing detrimental effects on the respiratory system and skin. Although some studies have investigated the effects of FD on the respiratory system, their possible effects on the skin remain under-explored. We investigated the FD mediated inflammatory responses in keratinocytes, present in the outer layers of skin tissues and the transfer of inflammatory potential to macrophages. We further evaluated the anti-inflammatory effects of the polyphenolic derivative, diphlorethohydroxycarmalol (DPHC) isolated from Ishige okamurae against FD-induced inflammation. Size distribution of FD particles was analyzed by scanning electron microscopy. FD particles induced the production of cyclooxygenase-2, prostaglandin E2 ($PGE_2$), interleukin (IL)-$1{\beta}$, and IL-6 in HaCaT keratinocytes and the expression of nitric oxide (NO), inducible nitric oxide synthases (iNOS), $PGE_2$, tumor necrosis factor-${\alpha}$ expression in RAW 264.7 macrophages. Further, we evaluated the inflammatory potential of the culture medium of inflammation-induced HaCaT cells in RAW 264.7 macrophages and observed a marked increase in the expression of NO, iNOS, $PGE_2$, and proinflammatory cytokines. DPHC treatment markedly attenuated the inflammatory responses, indicating its effectiveness in suppressing a broad range of inflammatory responses. It also showed anti-inflammatory potential in in-vivo experiments using FD-stimulated zebrafish embryos by decreasing NO and reactive oxygen species production, while eventing cell death caused by inflammation.