Anti-inflammatory Activity on LPS-stimulated in vitro RAW 264.7 Cells and in vivo Zebrafish of Heterosigma akshiwo

  • Kim, Junseong (Jeju International Marine Science Center for Research & Education, Korea Institute of Ocean Science & Technology (KIOST)) ;
  • Choi, Youn Kyung (Jeju International Marine Science Center for Research & Education, Korea Institute of Ocean Science & Technology (KIOST)) ;
  • Lee, Ji-Hyeok (Department of Marine Life Science, Jeju National University) ;
  • Kim, Seo-Young (Department of Marine Life Science, Jeju National University) ;
  • Kim, Hyun-Soo (Department of Marine Life Science, Jeju National University) ;
  • Jeon, You-Jin (Department of Marine Life Science, Jeju National University) ;
  • Heo, Soo-Jin (Jeju International Marine Science Center for Research & Education, Korea Institute of Ocean Science & Technology (KIOST))
  • Received : 2017.09.07
  • Accepted : 2017.09.26
  • Published : 2017.09.30

Abstract

Red tide Heterosigma akashiwo (H. akashiwo), a microscopic alga of the class Raphidophyceae, causes extensive damage to all marine ecosystems. It is essential to reduce the damage to marine ecosystems for them to be used as a resource. In this study, we used organic solvent fractionation to obtain an ethyl acetate-methanol extract from H. akashiwo (HAEM80) and then evaluated its anti-inflammatory activity in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells and a zebrafish model. HAME80 markedly inhibited the production of nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$). It also down-regulated the protein expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) and decreased the secretion of interleukin-$1{\beta}$ ($IL-1{\beta}$) in LPS-stimulated RAW 264.7 cells. HAME80 reduced yolk edema and improved the survival rate of LPS-stimulated zebrafish embryos; in addition, the extract significantly reduced the production of ROS and NO and attenuated cell death in this model. Gas chromatography-mass spectrometry (GC-MS) of the extract was used to confirm the identity of peaks 1-20. Taken together, our data suggest that H. akashiwo is a beneficial anti-inflammatory agent.

Keywords

Acknowledgement

Supported by : Ministry of Oceans and Fisheries, Korea Institute of Ocean Science and Technology

References

  1. Kim, M. C.: Algal growth potential (AGP) assay using Heterosigma akashiwo (Raphidophyceae) in Pukman bay, Korea. J. Korean Soc. Marine Environ. Safety 2006, 12, 81-87.
  2. Islam, M. N, Ishita, I. J, Jin, S. E., Choi, R. J., Lee, C. M., and Kim, Y. S.: Anti-inflammatory activity of edible brown alga Saccharina japonica and its constituents pheophorbide a and pheophytin a in LPS-stimulated RAW 264.7 macrophage cells. Food Chem. Toxicol. 2013, 55, 541-548. https://doi.org/10.1016/j.fct.2013.01.054
  3. Heo, S. J., Yoon, W. J., Kim, K. N., Ahn, G. N., Kang, S. M., and Kang, D. H.: Evaluation of anti-inflammatory effect of fucoxanthin isolated from brown algae in lipopolysaccharide-stimulated RAW 264.7 macrophages. Food Chem. Toxicol. 2010, 48, 2045-2051. https://doi.org/10.1016/j.fct.2010.05.003
  4. Marakalala, M. J., Raju, R. M., Sharma, K., Zhang, Y. J., Eugenin, E. A., and Prideaux, B.: Inflammatory signaling in human tuberculosis granulomas is spatially organized. Nature Med. 2016, 22, 531-538. https://doi.org/10.1038/nm.4073
  5. Mateen, S., Zafa,r A., Moin, S., Khan, A. Q., and Zubair, S.: Understanding the role of cytokines in the pathogenesis of rheumatoid arthritis. Clinica Chimica Acta 2016, 455, 161-171. https://doi.org/10.1016/j.cca.2016.02.010
  6. Kim, K. N., Heo, S. J., Yoon, W. J., Kang, S. M., Ahn, G., and Yi, T. H.: Fucoxanthin inhibits the inflammatory response by suppressing the activation of NF-${\kappa}B$ and MAPKs in lipopolysaccharide-induced RAW 264.7 macrophages. European J. Pharmacol. 2010, 649, 369-375. https://doi.org/10.1016/j.ejphar.2010.09.032
  7. Lee, J. H., Ko, J. Y., Samarakoon, K., Oh, J. Y., Heo, S. J., and Kim, C. Y.: Preparative isolation of sargachromanol E from Sargassum siliquastrum by centrifugal partition chromatography and its anti-inflammatory activity. Food Chem. Toxicol. 2013, 62, 54-60. https://doi.org/10.1016/j.fct.2013.08.010
  8. Zhang, Y., Wu, J., Ying, S., Chen, G., Wu, B., and Xu, T.: Discovery of new MD2 inhibitor from chalcone derivatives with anti-inflammatory effects in LPS-induced acute lung injury. Scientific Rep. 2016, 6.
  9. Akyuz, M., Ata, S., and Dinc, E.: A chemometric optimization of method for determination of nitrosamines in gastric juices by GC-MS. J. Pharmaceut. Biomed. Analysis 2016, 117, 26-36. https://doi.org/10.1016/j.jpba.2015.08.021
  10. Castro, A. L, Tarelho, S., Dias, M., Reis, F., and Teixeira, H. M.: A fast and reliable method for GHB quantitation in whole blood by GC-MS/MS (TQD) for forensic purposes. J. Pharmaceut. Biomed. Analysis 2016, 119, 139-144. https://doi.org/10.1016/j.jpba.2015.11.038
  11. Kim, S. Y., Kim, E. A., Kang, M. C., Lee, J. H., Yang, H. W., and Lee, J. S.: Polyphenol-rich fraction from Ecklonia cava (a brown alga) processing by-product reduces LPS-induced inflammation in vitro and in vivo in a zebrafish model. Algae 2014, 29, 165. https://doi.org/10.4490/algae.2014.29.2.165
  12. Kim, K. N., Ko, Y. J., Kang, M. C., Yang, H. M., Roh, S. W., and Oda, T.: Anti-inflammatory effects of trans-1,3-diphenyl-2,3-epoxypropane-1-one mediated by suppression of inflammatory mediators in LPS-stimulated RAW 264.7 macrophages. Food Chem. Toxicol. 2013, 53, 371-375. https://doi.org/10.1016/j.fct.2012.12.021
  13. Ma, L., Chen, H., Dong, P., and Lu, X.: Anti-inflammatory and anticancer activities of extracts and compounds from the mushroom Inonotus obliquus. Food Chem. 2013, 139, 503-508. https://doi.org/10.1016/j.foodchem.2013.01.030
  14. Ahmad, N., Chen, L. C., Gordon, M. A., Laskin, J. D., and Laskin, D. L.: Regulation of cyclooxygenase-2 by nitric oxide in activated hepatic macrophages during acute endotoxemia. J. Leukocyte Biol. 2002, 7, 1005-1011.
  15. Scholz, S., Fischer, S., Gunde,l U., Kuster, E., Luckenbach, T., and Voelker, D.: The zebrafish embryo model in environmental risk assessment - applications beyond acute toxicity testing. Environ. Sci. Pollut. Res. 2008, 15, 394-404. https://doi.org/10.1007/s11356-008-0018-z
  16. Yang, Y. I., Jung, S. H., Lee, K. T., and Choi, J. H.: 8, 8'-Bieckol, isolated from edible brown algae, exerts its anti-inflammatory effects through inhibition of NF-${\kappa}B$ signaling and ROS production in LPS-stimulated macrophages. Int. Immunopharmacol. 2014, 23, 460-468. https://doi.org/10.1016/j.intimp.2014.09.019
  17. Yang, H. M., Ham, Y. M., Yoon, W. J., Roh, S. W., Jeon, Y. J., and Oda, T.: Quercitrin protects against ultraviolet B-induced cell death in vitro and in an in vivo zebrafish model. J. Photochem. Photobiol. B: Biol. 2012, 114, 126-131. https://doi.org/10.1016/j.jphotobiol.2012.05.020
  18. Kang, M. C., Kim, S. Y., Kim, Y. T., Kim, E. A., Lee, S. H., and Ko, S. C.: In vitro and in vivo antioxidant activities of polysaccharide purified from aloe vera (Aloe barbadensis) gel. Carbohydr. Polym. 2014, 99, 365-371. https://doi.org/10.1016/j.carbpol.2013.07.091
  19. Ko, J. Y., Kim, E. A., Lee, J. H., Kang, M. C., Lee, J. S., and Kim, J. S.: Protective effect of aquacultured flounder fish-derived peptide against oxidative stress in zebrafish. Fish Shellfish Immunol. 2014, 36, 320-323. https://doi.org/10.1016/j.fsi.2013.11.018
  20. Zhang, C., Lai, J. h., Hu, B., Zhang, S., Zhao, J., and Li, W.: A chromatin modifier regulates Sertoli cell response to mono-(2-ethylhexyl) phthalate (MEHP) via tissue inhibitor of metalloproteinase 2 (TIMP2) signaling. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms 2014, 1839, 1170-1182. https://doi.org/10.1016/j.bbagrm.2014.08.006
  21. Moss, E. J., Cook, M. W., Thomas, L. V., and Gray, T. J.: The effect of mono-(2-ethylhexyl) phthalate and other phthalate esters on lactate production by Sertoli cells in vitro. Toxicol. Lett. 1988, 40, 77-84. https://doi.org/10.1016/0378-4274(88)90185-3