• 제목/요약/키워드: Manifold Design

검색결과 183건 처리시간 0.019초

Basic Performance Characteristics of HCCI (Homogeneous Charge Compression Ignition) Engine

  • Choi Gyeung Ho;Chung Yon Jong;Kim Ji Moon;Dibbler Robert W.;Han Sung Bin
    • 에너지공학
    • /
    • 제14권4호
    • /
    • pp.226-231
    • /
    • 2005
  • Essentially combination of spark ignition and compression ignition engines, the HCCI engine exhibits low NOx and Particulate Matter (PM) emissions as well as high efficiency under part load. This paper is concerned with the Homogeneous Charge Compression Ignition (HCCI) engine as a new concept in engines and a power source for future automotive applications. In this research, a 4 cylinder diesel engine was converted into a HCCI engine, and propane was used as the fuel. The purpose of this research is to show the effects of fuel flow rate and the temperature of the intake manifold on the performance and exhaust of an HCCI engine.

가솔린 기관용 인젝터의 분무 구조에 관한 실험적 연구 (An Experimental Study on the Spray Structure of a Gasoline Engine Injector)

  • 조병옥;이창식;임경수
    • 한국자동차공학회논문집
    • /
    • 제3권1호
    • /
    • pp.118-130
    • /
    • 1995
  • Fuel spray in a gasoline engine is a significant factor for the decision of engine power, pollutant emission and the design of intake manifold system. Three kinds of fuel which has other physical properties are chosen in this study, and it is observed using an image processing method that the mechanism and structure of free fuel spray with a throttle type gasoline injector, and the detailed characteristics of droplet size and velocity distributions are obtained by macro and micro-scopic measuring method respectively. It is verified that the initial breakup behaviors are depended on We like the result of Reitz's study, and also observed that the spray of octane and solvent with Re of 210~330 and 270~330 respectively are better than ethanol which has relatively high density and viscosity.

  • PDF

공리적 접근을 이용한 자동차 경량화 설계 - 통합 흡기시스템의 개발(I) (Weight Reduction in automobile Design Through Axiomatic Approach -Developed of Integrated Air Fuel Module(I)-)

  • 문용락;차성운;윤풍영
    • 한국자동차공학회논문집
    • /
    • 제7권6호
    • /
    • pp.106-114
    • /
    • 1999
  • Today, one of the most important objective in automobile development is to reduce the weight of automobile . The eventual depletion of petroleum and environmental regulations brought considerable emphasis to this area on increasing fuel efficiency. Conventional intake air-fuel system is very heavy because it is composed of numerous parts. The bulky size caused increase in the amount of metal being used to build automobile chassis and this became a serious weight problem. The size also caused difficulties in optimization of fuel supply system which in turn decreased engine efficiency. Currently , there are efforts to integrate several intake system modules into one. The purpose of this paper is to evaluate the directions of such development.

  • PDF

Sliding mode control based on neural network for the vibration reduction of flexible structures

  • Huang, Yong-An;Deng, Zi-Chen;Li, Wen-Cheng
    • Structural Engineering and Mechanics
    • /
    • 제26권4호
    • /
    • pp.377-392
    • /
    • 2007
  • A discrete sliding mode control (SMC) method based on hybrid model of neural network and nominal model is proposed to reduce the vibration of flexible structures, which is a robust active controller developed by using a sliding manifold approach. Since the thick boundary layer will reduce the virtue of SMC, the multilayer feed-forward neural network is adopted to model the uncertainty part. The neural network is trained by Levenberg-Marquardt backpropagation. The design objective of the sliding mode surface is based on the quadratic optimal cost function. In course of running, the input signal of SMC come from the hybrid model of the nominal model and the neural network. The simulation shows that the proposed control scheme is very effective for large uncertainty systems.

가솔린 엔진용 배기매니버터 유동특성 해석 및 시험에 관한 연구 (CFD ANALYSIS AND EXPERIMENT OF EXHAUST MANIVERTER OF GASOLINE ENGINE)

  • 엄용석;박남섭;신철균;이점주;이관순
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.468-472
    • /
    • 2010
  • To develop the Exhaust Maniverter(Manifold and converter) it needs to consider flow characteristics related to durability and performance of the catalyst, manufacturability, etc. This paper presents the analysis results regarding to flow characteristics such as flow uniformity, tangential speed, O2 sensor sensitivity and CHT (conjugate heat transfer) for the LCF(Low Cycle Fatigue) for gasoline 2.0 liter engine. The results are satisfactorily corresponded to the general criteria. Also skin temperature and pressure drop wire measured at the Engine Bench. These results can be useful for the design guide for Exhaust Maniverter.

  • PDF

탄성관절을 갖는 로봇 매니퓰레이터의 안정한 합성제어기 설계 (A Stable Composite Controller Design for Flexible Joint Robot Manipulators)

  • 이만형;백운보
    • 대한기계학회논문집
    • /
    • 제17권2호
    • /
    • pp.385-392
    • /
    • 1993
  • This paper presents a new stable composite control law for the flexible joint robot manipulators, which incorporate an additional stabilizing control law with the sliding property. The singularly perturbated models in this paper include inertia moments which are functions or the deformations of actuators as well as link positions. The values of renewedly defined fast controller variables are computer from the corrected reduced-order model without additional computational loads. Proposed schemes are compared with the conventional one. The simulations for 2 DOF flexible joint manipulator show that the proposed schemes are more stable than the conventional scheme, and especially effective for the manipulator with high joint-flexibilities.

Surface Extraction from Multi-material CT Data

  • Fujimori, Tomoyuki;Suzuki, Hiromasa
    • International Journal of CAD/CAM
    • /
    • 제6권1호
    • /
    • pp.81-87
    • /
    • 2006
  • This paper describes a method for extracting surfaces from multi-material CT (Computed Tomography) data. Most contouring methods such as Marching Cubes algorithm assume that CT data are composed of only two materials. Some extended methods such as [3, 6] can extract surfaces from the multi-material (non-manifold) implicit representation. However, these methods are not directly applicable to CT data that are composed of three or more materials. There are two major problems that arise from fundamentals of CT. The first problem is that we have to use n(n-1)/2 threshold values for CT data contains n materials and select appropriately one threshold value for each boundary area. The second is that we cannot reconstruct only from CT data in which area three or more materials are adjacent each other. In this paper, we propose a method to solve the problems by using image analysis and demonstrate the effectiveness of the method with application examples construct polygon models from CT data of machine parts.

병렬 마이크로 채널 형상에 따른 CFD 유동해석 (CFD Analysis on the Channel Shapes of Parallel Micro-Channels)

  • 최용석;임태우;김유택;김도엽
    • 수산해양교육연구
    • /
    • 제25권5호
    • /
    • pp.1102-1109
    • /
    • 2013
  • An numerical analysis was performed to obtain the design parameters for parallel micro-channels. The parallel micro-channels consist of 10 square channels with a hydraulic diameter of 300 ${\mu}m$ and inlet/outlet manifolds. The channel length is 5mm, 10mm and 40mm respectively. Mass flux was set between 200~600kg/m2s as inlet boundary condition and atmospheric pressure was set as outlet boundary condition. The pressure drop in channels and manifolds were estimated by using the Shah and London correlation and the flow uniformity was represented by the velocity distributions with dimensionless velocity. The results show that the flow uniformity in channels depends on shapes of manifolds, length and mass flux.

고분자 전해질형 연료전지 자동차의 급기 시스템의 동적 모델링 및 분석 (Dyamic Modeling and Analysis of Air Supply System for Vehicular PEM Fuel Cell)

  • 장현탁
    • 한국수소및신에너지학회논문집
    • /
    • 제15권3호
    • /
    • pp.175-186
    • /
    • 2004
  • In this paper, we developed the dynamic model of a fuel cell system suitable for controller design and system operation. The transient phenomena captured in the model include the flow characteristics and inertia dynamics of the compressor, the intake manifold filling dynamics, oxygen partial pressures and membrane humidity on the fuel cell voltage. In the simulations, we paid attention to the transient behavior of stack voltage and compressor pressure, stoichiometric ratio. Simulation results are presented to demonstrate the model capability. For load current following, stack voltage dynamic characteristics are plotted to understand the Electro-chemistry involved with the fuel cell system. Compressor pressure and stoichiometric ratio are strongly coupled, and independent parameters may interfere with each other, dynamic response, undershoot and overshoot.

Analysis of Flow Characteristics in the Intake System of 6-Cylinder MPI CNG Engine

  • Ha, Seung-Hyun;Kim, Ho-Young;Chung, Jin-Taek
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2002년도 제25회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.215-222
    • /
    • 2002
  • It has been well acknowledged that intake system plays great role in the performance of reciprocating engine. Well-designed intake system is expected to not only increase engine efficiency but also decrease engine emission, which is one of the most urgent issues in the automotive society. Thorough understanding of the flow in intake system helps great to design adequate intake system. Even though both experimental and numerical methods are used to study intake flow, numerical analysis is more widely used due to its merits in time and economy. Intake system of In-line 6-Cylinder CNG engine was chosen for the analysis ICEM CFD HEXA was used to create 3-D structured grid and FIRE code was used for the flow analysis in the intake system. Due to the complexity of the geometry standard ${\kappa}-{\varepsilon}$ turbulence model was applied. Numerical analysis was performed for various inlet and outlet boundary conditions under both steady and transient flow. Inlet mass flow rate and outlet pressure variation were changing parameters with respect to engine speed. Flow parameters, such as velocity, pressure and flow distribution, were evaluated to provide adequate data of this intake system.

  • PDF