• Title/Summary/Keyword: Main Landing Gear

Search Result 22, Processing Time 0.025 seconds

Dynamic Analysis of a Helicopter Landing Gear with Considering Flexible Structural Modes (동체의 유연성을 고려한 헬기 착륙장치의 동특성 해석 연구)

  • Hyun, Young-O;Bae, Jae-Seoung;Kim, Young-Seok;Hwang, Jae-Up;Lim, Kyoung-Ho;Kim, Doo-Man;Kim, Tae-Wook;Hwang, Jai-Hyuk
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.15 no.4
    • /
    • pp.33-37
    • /
    • 2007
  • In this paper, a dynamic analysis of a helicopter landing gear with considering flexible structural modes has been investigated. The main body of the helicopter has been modeled as a flexible body using FEM code, then a few selected vibration modes of the helicopter main body have been used as basis for the dynamic analysis of the helicopter landing gear. The simulation of dynamic analysis was carried out on the base of ADAMS aircraft module. It has been found by a series of simulation that the flexible structural modes has a significant effect on the dynamic characteristics of helicopter landing gear as the flexibility of the main body is increased.

  • PDF

Impact Dynamic Analysis for the Wheel-Type Landing Gear System of Helicopter (헬리콥터 휠타입 착륙장치 충돌특성 연구)

  • Park, Hyo-Geun;Kim, Dong-Man;Kim, Dong-Hyun;Cho, Yun-Mo;Chung, Jae-Hoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.5
    • /
    • pp.12-22
    • /
    • 2008
  • In this study, the dynamic characteristics for the wheel-type landing gear system of helicopter have been analyzed. Nonlinear multi-body dynamic models of the landing gear system are constructed and the equations of motion, kinematics and internal forces of shock strut are considered. In addition, flexibility effect of the wheel axle with equivalent beam element is taken into account. General purpose commercial finite code, SAMCEF which includes MECANO module is applied. The results of dynamic simulation for various landing and weight conditions are presented and compared with each other. Based on the results, characteristics of impact dynamic behaviors of the landing gear system are practically investigated.

Force Control of Main Landing Gear using Magneto-Rheological Damper (MR 댐퍼를 이용한 주륜 착륙장치 하중제어기법 연구)

  • Hyun, Young-O;Hwang, Jae-Up;Hwang, Jae-Hyuk;Bae, Jae-Sung;Lim, Kyoung-Ho;Kim, Doo-Man;Kim, Tae-Wook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.4
    • /
    • pp.344-349
    • /
    • 2009
  • To improve performance of the main landing gear for helicopters, a semi-active control landing gear is introduced in this paper. An MR damper based on commercial finite element electromagnetic field analysis of an electromagnet has been adapted the shock absorber. Force control algorithm (which maintains constantly the sum of air spring force and damping force as internal forces) which keep the sum of air spring force and damping force constant during landing, has been used for the controller, applied to control the semi-active landing gear. A series of drop simulations using ADAMS has been done with the passive, sky-hook control type, and force control type landing gears. The result of each simulation has been compared to evaluate the landing performance of the proposed force control type landing gear.

Drop Test for the UAV Landing Gear Performance Verification (무인정찰기 착륙장치 성능입증을 위한 낙하시험)

  • Shin, Jeong-Woo;Lee, Seung-Gyu;Yang, Jin-Yeol;Kim, Sung-Joon;Hwang, In-Hee;Chung, Sang-Joon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.250-254
    • /
    • 2011
  • Main role of landing gear is to absorb the energy which is generated by aircraft lanidng and ground maneuvering. Generally, in order to absorb the impact energy during landing, oleo-pneumatic type shock absorber is used for aircraft landing gear. Oleo-pneumatic type shock absorber has a good energy absorbing efficiency and is light in weight because its structure is relatively simple. For the landing gear development, it is necessary to conduct drop test in order to verify shock absorbing performance. In the drop test, first, gas spring curve verification tests are conducted. Then, limit and reserve energy absorption drop tests are performed based on the STANAG 4671. The drop tests results with performance analysis results are presented.

  • PDF

Stress Analysis of Plate-Spring-Type Landing Gear Materials (판스프링형 랜딩기어의 재질에 따른 응력 해석)

  • Kim, Kyeong-Hwan;Lee, Young-Shin;Han, Jae-Do
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.3
    • /
    • pp.303-308
    • /
    • 2014
  • Aircraft are an indispensable mode of modern transportation. They are also used as in a wide variety of other fields. For example, aircraft are used for accommodating passengers, carrying freight, and for military reconnaissance. Aircraft ground operations include landing and taking off. During landing, a higher load is applied to the landing gear than during takeoff. The landing gear should absorb impact energy and prevent damage to the main body of the aircraft in the case of an accident. In this study, simulations were performed for two types of plate-spring-type landing gear: that made of composite materials and that constructed with aluminum. The structural safety of landing gear made of each material was also evaluated.

Force Control of Main Landing Gear using Hybrid Magneto-Rheological Damper (하이브리드 MR댐퍼를 이용한 주륜 착륙장치 하중제어기법 연구)

  • Hyun, Young-O;Hwang, Jae-Up;Hwang, Jae-Hyuk;Bae, Jae-Sung;Lim, Kyoung-Ho;Kim, Doo-Man;Kim, Tae-Wook;Park, Myung-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.4
    • /
    • pp.315-320
    • /
    • 2010
  • To improve not only the basic performance but also the fail-safe performance, power consumption of the main landing gear for helicopters, a semi-active control landing gear using hybrid MR damper, was introduced in this paper. This damper of the configuration to install a permanent magnet in a electromagnet MR damper, was designed by the trade-off study on permanent magnet location and a magnet field analysis. Force control algorithm which keep the sum of air spring force and damping force at a specified value during landing, was used for the controller. The drop simulations using ADAMS Model for this semi-active control landing gear, were done. The improvement of the preceding performances as the result to evaluate the landing performance by the simulations, has been confirmed.

ACN Estimation for Medium-class Aircraft (중형수송기 Aircraft Classification Number 예측)

  • Chung, Jin-Deog;Bae, Joong-Won;Lee, Hae-Chang
    • Journal of Aerospace System Engineering
    • /
    • v.4 no.3
    • /
    • pp.34-38
    • /
    • 2010
  • ACN(Aircraft Classification Number) is allocated by marketing group during early stage of aircraft design phase and is a critical parameter to decide whether the designed aircraft can be landed or not in a certain airport. The loading on the main landing gear wheels, selection of main landing gear tire and estimation of ACNs for flexible and rigid pavements were done for the proposed medium-class aircraft. The estimated ACN values are compared with the similar class aircraft. And PCN(Pavement Classification Number) values of airport in Korea are surmmarized. Results showed that the currently proposed medium-class aircraft can land any airport in Korea.

  • PDF

Crashworthy Design and Test of Landing Gear (착륙장치 내추락 설계 및 시험평가)

  • Kim, Tae-Uk;Lee, Sang-Wook;Shin, Jeong-Woo;Lee, Seung-Kyu;Kim, Sung-Chan;Hwang, In-Hee;Jo, Jeong-Jun;Lee, Je-Dong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.7
    • /
    • pp.601-607
    • /
    • 2012
  • The main function of a landing gear is to absorb the impact energy during touchdown. It it occasionally required for landing gear to have crashworthiness for improving survivability and safety in case of emergency landing. This paper introduces the design concept, performance analysis and drop test procedures for the development of the crashworthy landing gear. The shock absorbing ability and the crash behavior are proved by analyzing various sensor data and video clips from high speed camera recording during drop tests.

The Study on Improvement about Structural Integrity of Main Landing Gear for Rotorcraft (회전익 항공기 구조건전성 향상을 위한 주륜착륙장치 결함 개선연구)

  • Jang, Min-Uk;Lee, Yoon-Woo;Seo, Young-Jin;Ji, Sang-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.10
    • /
    • pp.459-467
    • /
    • 2019
  • The landing gear is a component that requires a high degree of safety to protect the lives of rotary-wing aircraft and boarding personnel, absorbing the impact on transfer/landing and supporting the fuselage during taxiing and mooring on the ground. In particular, the wheel landing gear supporting the aircraft fuselage absorbs most of the shock from the ground through the shock absorber and tires. This ensures the safety of the pilot on board the aircraft and satisfies the operational capability of the soldiers between missions. During the operation of a rotary-wing aircraft, a number of piston pins, which are a component of the right main wheel landing gear, were found to be broken. Therefore, this study examined the root cause of the piston pin crack phenomenon found in the main wheel landing gear. For this purpose, various causes were identified from fracture surface analysis of a flight test. In particular, the possibility of cracking was analyzed based on the influence on the fastening torque with the drag beam component applied to the piston pin at the time of development. This ensures the fatigue life and structural integrity.

A Improvement Study on Safety Assurance of Main Landing Gear Failure for Rotary Wing Aircraft (회전익 항공기 안전 확보를 위한 주륜완충장치 결함 개선연구)

  • Choi, Jae Hyung;Chang, Min Wook;Lim, Hyun-Gyu;Lee, Je Suk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.6
    • /
    • pp.490-497
    • /
    • 2017
  • The Main Landing Gear(MLG) of Rotary Wing Aircraft is an essential equipment in Landing System for pilot to perform a flight mission. It supports the fuselage at ground and absorbs the impact from the ground when landing, thereby, these functions sustain operational capability for pilot and crew. However, the A aircraft caused asymmetry and leakage hydraulic when it was stationed on the ground. Therefore, this paper summarizes pilot comments in operation which are classified by cause of occurrence and the troubleshooting process about each comment. It also describes design improvements which was derived from troubleshooting and suggests verification results of flight test.