• Title/Summary/Keyword: Magnetic Resonance Method

Search Result 878, Processing Time 0.033 seconds

Fully automatic Segmentation of Knee Cartilage on 3D MR images based on Knowledge of Shape and Intensity per Patch (3차원 자기공명영상에서 패치 단위 형상 및 밝기 정보에 기반한 연골 자동 영역화 기법)

  • Park, Sang-Hyun;Lee, Soo-Chan;Shim, Hack-Joon;Yun, Il-Dong;Lee, Sang-Uk
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.6
    • /
    • pp.75-81
    • /
    • 2010
  • The segmentation of cartilage is crucial for the diagnose and treatment of osteoarthritis (OA), and has mostly been done manually by an expert, requiring a considerable amount of time and effort due to the thin shape and vague boundaries of the cartilage in MR (magnetic resonance) images. In this paper, we propose a fully automatic method to segment cartilage in a knee joint on MR images. The proposed method is based on a small number of manually segmented images as the training set and comprised of an initial per patch segmentation process and a global refinement process on the cumulative per patch results. Each patch for per patch segmentation is positioned by classifying the bone-cartilage interface on the pre-segmented bone surface. Next, the shape and intensity priors are constructed for each patch based on information extracted from reference patches in the training set. The ratio of influence between the shape and intensity priors is adaptively determined per patch. Each patch is segmented by graph cuts, where energy is defined based on constructed priors. Finally, global refinement is conducted on the global cartilage using the results of per patch segmentation as the shape prior. Experimental evaluation shows that the proposed framework provide accurate and clinically useful segmentation results.

High-intensity focused ultrasound beam path visualization using ultrasound imaging (초음파 영상을 이용한 고강도 집중 초음파 빔 시각화)

  • Song, Jae Hee;Chang, Jin Ho;Yoo, Yang Mo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.1
    • /
    • pp.16-23
    • /
    • 2020
  • In High-Intensity Focused Ultrasound (HIFU) treatment, effective localization of HIFU focus is important for developing a safe treatment plan. While Magnetic Resonance Imaging guided HIFU (MRIgHIFU) can visualize the ultrasound path during the treatment for localizing HIFU focus, it is challenging in ultrasound imaging guided HIFU (USIgHIFU). In the present study, a real-time ultrasound beam visualization technique capable of localizing HIFU focus is presented for USIgHIFU. In the proposed method, a short pulse, with the same center frequency of an imaging ultrasound transducer below the regulated acoustic intensity (i.e., Ispta < 720 mW/㎠), was transmitted through a HIFU transducer whereupon backscattered signals were received by the imaging transducer. To visualize the HIFU beam path, the backscattered signals underwent dynamic receive focusing and subsequent echo processing. From in vitro experiments with bovine serum albumin gel phantoms, the HIFU beam path was clearly depicted with low acoustic intensity (i.e., Ispta of 94.8 mW/㎠) and the HIFU focus was successfully localized before any damages were produced. This result indicates that the proposed ultrasound beam path visualization method can be used for localizing the HIFU focus in real time while minimizing unwanted tissue damage in USIgHIFU treatment.

Right Amygdalar Laterobasal Subregional Differences in Healthy Adults with Different Novelty Seeking Tendencies (정상 성인에서 자극추구 기질에 따른 우측 편도체의 측기저 세부구조의 차이)

  • Cho, Han-Byul;Kim, Bin-Na;Choi, Ji-Hye;Jeon, Yu-Jin;Kim, Ji-Hyun H.;Jung, Ji-Young J.;Im, Joo-Yeon Jamie;Lee, Sun-Hea
    • Korean Journal of Biological Psychiatry
    • /
    • v.19 no.2
    • /
    • pp.71-76
    • /
    • 2012
  • Objectives : Novelty seeking (NS) represents a dopaminergically modulated tendency toward frequent exploratory activity. Considering the reports showing the relationship between exploratory activity and amygdalar function and structure, and the fact that amygdala is one of the key structures that constitute the dopaminergic pathway in the brain, amygdala might be closely related to NS tendencies. Amygdalar subregional analysis method, which has the enhanced sensitivity compared to the volumteric approach would be appropriate in investigating the subtle differences of amygdalar structures among healthy individuals. The aim of the current study was to examine whether amygdalar subregional morphometric characteristics are associated with the NS tendencies in healthy adults using the amygdalar subregional analysis method. Methods : Twenty-six healthy adults (12 males, 14 females ; mean age $29.8{\pm}6.2$ years) were screened for eligibility. All subjects completed the Korean version of the Temperament and Character Inventory (TCI) and underwent high-resolution brain magnetic resonance imaging. Individuals were divided into 2 groups according to NS scores of the TCI. Results : Individuals of the high NS group had significantly larger laterobasal subregions in right amygdala, after adjustment with the brain parenchymal volumes. Sensitivity analyses for each potential confounding factor such as age, education years and Hamilton Depression Rating Scale (HDRS) scores demonstrated consistent results. Conclusions : This study suggests that NS differences are associated with the laterobasal subregion of the amygdala.

The Measurement Errors of Elastic Modulus and Hardness due to the Different Indentation Speed (압입속도의 변화에 따른 탄성계수와 경도의 오차 연구)

  • Lee, Kyu-Young;Lee, Chan-Bin;Kim, Soo-In;Lee, Chang-Woo
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.5
    • /
    • pp.360-364
    • /
    • 2010
  • Most research groups used two analysis methods (spectroscopy and nanotribology) to measure the mechanical properties of nano-materials: NMR (Nuclear Magnetic Resonance), IR (Infrared Spectroscopy), Raman Spectroscopy as the spectroscopy method and AFM (Atomic Force MicroScope), EFM (Electrostatic Force Microscope), KFM (Kelvin Force Microscope), Nanoindenter as the nanotribological one. Among these, the nano-indentation technique particularly has been recognized as a powerful method to measure the elastic modulus and the hardness. However, this technique are prone to considerable measurement errors with pressure conditions during measurement. In this paper, we measured the change of elastic modulus and hardness of an Al single crystal with the change of load, hold, and unload time, respectively. We found that elastic modulus and hardness significantly depend on load, hold, and unload time, etc. As the indent time was shortened, the elastic modulus value decreased while the hardness value increased. In addition, we found that elastic modulus value was more sensitive to indent load, hold, and unload time than the hardness value. We speculate that measurement errors of the elastic modulus and the hardness originate from the residual stress during indenting test. From our results, the elastic modulus was more susceptible to the residual stress than the hardness. Thus, we find that the residual stress should be controlled for the minimum measurement errors during the indenting test.

Diagnostic efficacy of specialized MRI & clinical results of arthroscopic treatment in ankle soft tissue impingement syndrome (족근 관절 연부조직 충돌 증후군에서 MRI의 진단적 의의 및 관절경적 치료 결과)

  • Lee, Jin-Woo;Moon, Eun-Su;Kim, Sung-Jae;Hahn, Soo-Bong;Kang, Eung-Shick
    • Journal of Korean Foot and Ankle Society
    • /
    • v.7 no.2
    • /
    • pp.208-217
    • /
    • 2003
  • Introduction: Soft-tissue impingement syndrome is now increasingly recognized as a significant cause of the chronic ankle pain. As a method to detect soft-tissue ankle impingement, a characteristic history and physical examination, routine MR imaging, and direct MR arthrography were used. The efficacy of routine MR imaging has been controversial for usefulness because of low sensitivity and specificity. Direct MR artrhography was recommaned for diagnosis because of the highest sensitivity, specificity and accuracy, but it requires an invasive procedure. The purpose of this study is to investigate the diagnostic accuracy of Fat suppressed, contrast enhanced, three-dimensional fast gradient recalled acquisition in the steady state with rediofrequency spoiling magnetic resonance imaging(CE 3D-FSPGR MRI) and to evaluate the clinical outcome of the arthroscopic treatment in assessing soft-tissue impingement associated with trauma of the ankle. Materials and Methods: We reviewed 38 patients who had arthroscopic evaluations and preoperative magnetic resonance imaging studies(3D-FSPGR MRI) for post-traumatic chronic ankle pain between January 2000 and August 2002. Among them, 24 patients had osteochondral lesion, lateral instability, loose body, malunion of lateral malleoli, and peroneal tendon dislocation. The patient group consisted of 23 men and 15 women with the average age of 34 years(16-81 years). The mean time interval from the initial trauma to the operation was 15.5 months(3 to 40 months), The mean follow-up duration of the assessment was 15.6months(12-48 months). MRI was simultaneously reviewed by two radiologists blinded to the clinical diagnosis. The sensitivity, specificity and accuracy of MRI was obtained from radiologic and arthroscopic finding. Arthroscopic debridement and additional operation for associated disease were performed. We used a standard protocol to evaluate patients before the operation and at follow-up which includes American Orthopedic Foot and Ankle Society Ankle-Hindfoot Score. Results: For the assessment of the synovitis and soft tissue impingement, fat suppressed CE 3D-FSPGR MR imaging had the sensitivity of 91.9%, the specificity of 84.4 and the accuracy of 87.5%. AOFAS Ankle-Hindfoot Score of preoperative state was 69.2, and the mean score of the last follow-up was 89.1. These were assessed as having 50% excellent(90-100) and 50% good(75-89). The presence of other associated disease didn't show the statistically significant difference(>0.05). Conclusion: Fat suppressed CE 3D-FSPGR MR imaging is useful method comparable to MR arthrography for diagnosis of synovitis or soft-tissue impingement, and arthroscopic debridement results in good clinical outcome.

  • PDF

A Study on Virtual Reality Management of 3D Image Information using High-Speed Information Network (초고속 정보통신망을 통한 3차원 영상 정보의 가상현실 관리에 관한 연구)

  • Kim, Jin-Ho;Kim, Jee-In;Chang, Chun-Hyon;Song, Sang-Hoon
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.12
    • /
    • pp.3275-3284
    • /
    • 1998
  • In this paper, we deseribe a Medical Image Information System. Our system stores and manages 5 dimensional medical image data and provides the 3 dimensional medical data via the Internet. The Internet standard VR format. VRML(Virtual Reality Modeling Language) is used to represent the 3I) medical image data. The 3D images are reconstructed from medical image data which are enerated by medical imaging systems such ans CT(Computerized Tomography). MRI(Magnetic Resonance Imaging). PET(Positron Emission Tomograph), SPECT(Single Photon Emission Compated Tomography). We implemented the medical image information system shich rses a surface-based rendering method for the econstruction of 3D images from 2D medical image data. In order to reduce the size of image files to be transfered via the Internet. The system can reduce more than 50% for the triangles which represent the surfaces of the generated 3D medical images. When we compress the 3D image file, the size of the file can be redued more than 80%. The users can promptly retrieve 3D medical image data through the Internet and view the 3D medical images without a graphical acceleration card, because the images are represented in VRML. The image data are generated by various types of medical imaging systems such as CT, MRI, PET, and SPECT. Our system can display those different types of medical images in the 2D and the 3D formats. The patient information and the diagnostic information are also provided by the system. The system can be used to implement the "Tele medicaine" systems.

  • PDF

Model-based Gradient Compensation in Spiral Imaging (나선주사영상에서 모델 기반 경사자계 보상)

  • Cho, S.H.;Kim, P.K.;Lim, J.W.;Ahn, C.B.
    • Investigative Magnetic Resonance Imaging
    • /
    • v.13 no.1
    • /
    • pp.15-21
    • /
    • 2009
  • Purpose : A method to estimate a real k-space trajectory based on a circuit model of the gradient system is proposed for spiral imaging. The estimated k-space trajectory instead of the ideal trajectory is used in the reconstruction to improve the image quality in the spiral imaging. Materials and Methods : Since the gradient system has self resistance, capacitance, and inductance, as well as the mutual inductance between the magnet and the gradient coils, the generated gradient fields have delays and transient responses compared to the input waveform to the gradient system. The real gradient fields and their trajectory in k-space play an important role in the reconstruction. In this paper, the gradient system is modeled with R-L-C circuits, and real gradient fields are estimated from the input to the model. An experimental method to determine the model parameters (R, L, C values) is also suggested from the quality of the reconstructed image. Results : The gradient fields are estimated from the circuit model of the gradient system at 1.5 Tesla MRI system. The spiral trajectory obtained by the integration of the estimated gradient fields is used for the reconstruction. From experiments, the reconstructed images using the estimated trajectory show improved uniformity, reduced overshoots near the edges, and enhanced resolutions compared to those using the ideal trajectory without model. Conclusion : The gradient system was successfully modeled by the R-L-C circuits. Much improved reconstruction was achieved in the spiral imaging using the trajectory estimated by the proposed model.

  • PDF

Image Comparison of Heavily T2 FLAIR and DWI Method in Brain Magnetic Resonance Image (뇌 자기공명영상에서 Heavily T2 FLAIR와 DWI 기법의 영상비교)

  • EunHoe Goo
    • Journal of Radiation Industry
    • /
    • v.17 no.4
    • /
    • pp.397-403
    • /
    • 2023
  • The purpose of this study is to obtain brain MRI images through Heavenly T2 FLAIR and DWI techniques to find out strengths and weaknesses of each image. Data were analyzed on 13 normal people and 17 brain tumor patients. Philips Ingenia 3.0TCX was used as the equipment used for the inspection, and 32 Channel Head Coil was used to acquire data. Using Image J and Infinity PACS Data, 3mm2 of gray matter, white matter, cerebellum, basal ganglia, and tumor areas were set and measured. Quantitative analysis measured SNR and CNR as an analysis method, and qualitative analysis evaluated overall image quality, lesion conspicuity, image distortion, susceptibility artifact and ghost artifact on a 5-point scale. The statistical significance of data analysis was that Wilcox-on Signed Rank Test and Paired t-test were executed, and the statistical program used was SPSS ver.22.0 and the p value was less than 0.05. In quantitative analysis, the SNR of gray matter, white matter, cerebellum, basal ganglia, and tumor of Heavily T2 FLAIR is 41.45±0.13, 40.52±0.45, 41.44±0.51, 40.96±0.09, 35.28±0.46 and the CNR is 15.24±0.13, 16.75±0.23, 16.28±0.41, 15.83±0.17, 16.63±0.51. In DWI, SNR is 32.58±0.22, 36.75±0.17, 30.21±0.19, 35.83±0.11, 43.29±0.08, and CNR is 13.14±0.63, 14.21±0.31, 12.95±0.32, 11.73±0.09, 17.56±0.52. In normal tissues, Heavenly T2 FLAIR obtained high results, but in disease evaluation, high results were obtained at DWI, b=1000 (p<0.05). In addition, in the qualitative analysis, overall image quality, lesion conspicuity, image distortion, susceptibility artifact and ghost artifact aspects of the Heavily T2 FLAIR were evaluated, and 3.75±0.28, 2.29±0.24, 3.86±0.23, 4.08±0.21, 3.79±0.22 values were found, respectively, and 2.53±0.39, 4.13±0.29, 1.90±0.20, 1.81±0.21, 1.52±0.45 in DWI. As a result of qualitative analysis, overall image quality, image distortion, susceptibility artifact and ghost artifact were rated higher than DWI. However, DWI was evaluated higher in lesion conspicuity (p<0.05). In normal tissues, the level of Heavenly T2 FLAIR was higher, but the DWI technique was higher in the evaluation of the disease (tumor). The two results were necessary techniques depending on the normal site and the location of the disease. In conclusion, statistically significant results were obtained from the two techniques. In quantitative and qualitative analysis, the two techniques had advantages and disadvantages, and in normal and disease evaluation, the two techniques produced useful results. These results are believed to be educational data for clinical basic evaluation and MRI in the future.

Antimicrobial Activity of Methyl Gallate isolated from the Leaves of Glochidion superbum Against Hospital Isolates of Methicillin Resistant Staphylococcus aureus

  • Ahmed, Mohammed Dahiru;Taher, Muhammad;Maimusa, Alhaji Hamusu;Rezali, Mohamad Fazlin;Mahmud, Mohammed Imad Al-deen Mustafa
    • Natural Product Sciences
    • /
    • v.23 no.1
    • /
    • pp.5-8
    • /
    • 2017
  • An antimicrobial compound has been isolated from the leaves of Glochidion superbum. The compound was determined as methyl 3, 4, 5-trihydroxybenzoate (methyl gallate), based on ultraviolet (UV), infrared (IR), nuclear magnetic resonance (NMR) and mass spectroscopy (MS) analysis. The isolated compound exhibited potent antimicrobial activity against three clinical isolates of methicillin resistant Staphylococcus aureus (MRSA) by qualitative agar disc diffusion method and quantitative broth dilution method. Agar disc diffusion was done in a dose-dependent manner for each bacterial isolate at disc potencies of 25, 50, 100, and $150{\mu}g/disc$. The zones of inhibition were on average equal to 12.27, 14.20, 15.43, and 24.17 mm respectively. The inhibition zones were compared with that of vancomycin disc at $30{\mu}g$ as a reference standard. The MIC and MBC values were $50{\mu}g/ml$ and $100{\mu}g/ml$ respectively. The results of anti MRSA activity were analyzed using one-way ANOVA with Turkey's HSD and Duncan test. In conclusion, methyl gallate which was isolated from G. superbum showed the inhibition activity against methicillin resistant S. aureus.

A study on the structural and electric properties of fluorinated $YBa_2Cu_3O_{7-y}$ (불소화된 $YBa_2Cu_3O_{7-y}$ 초전도체의 구조적, 전기적 성질에 관한 연구)

  • 김재욱;김채옥
    • Electrical & Electronic Materials
    • /
    • v.9 no.4
    • /
    • pp.404-409
    • /
    • 1996
  • The structural and electric properties of $Y_{1-x}$YbF$_{x}$Ba$_{2}$Cu$_{3}$O$_{7-y}$(x=0.0, 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6) have been investigated by using XRD(X-ray diffraction), TMA(thennomechanical analysis), NMR(nuclear magnetic resonance) analysis and four probe method. $Y_{1-x}$YbF$_{x}$Ba$_{2}$Cu$_{3}$O$_{7-y}$ samples were prepared by conventional solid-state reaction method using $Y_{2}$O$_{3}$, BaCO$_{3}$, CuO and YbF$_{3}$ power. TMA and high temperature XRD results shows that orthorhombic to tetragonal phase transition occurs in the unfluorinated 1-2-3 sample while the phase change is not observed in the fluorinated 1-2-3 samples. Superconducting transition temperature(T$_{c}$) increases with increasing YbF$_{3}$ content ; T$_{c}$, of the sample reaching maximum of 102K for x=0.3, and then decreases with further increasing YbF$_{3}$ content. The structural analysis and T$_{c}$ results shows that the fluorine doping stabilize the orthorhombic phase, together with the increase in T$_{c}$.}$ c/.TEX> c/.

  • PDF