• Title/Summary/Keyword: Macrophomina phaseolina

Search Result 25, Processing Time 0.022 seconds

Pathogenicity of Macrophomina phaseolina and Fusarium verticilloides in Okra

  • Begum Mashooda;Lokesh S.;Kumar T. Vasanth
    • Animal cells and systems
    • /
    • v.9 no.1
    • /
    • pp.37-40
    • /
    • 2005
  • In okra Macrophomina phaseolina and Furasium verticilloides cause collar-rot, seedling-rot and other severe diseases at fruit maturing stages. These stages were located in all the components of the seeds. The seeds collected from seeds infected with Macrophomina phaseolina and Fusarium verticilloides revealed 100% infection. Such seeds resulted in pre- and post-emergence mortalities. Inoculated seeds also showed pre- and post-emergence death of the seedlings. The fungi seed-transmitted showed disease symptoms at different growth of okra plant. Fusarium verticilloides causes the wilt and Macrophomina phaseolina causes the collar-rot. Until now seed transmission of these fungi have not been studied. Hence, in the present study an attempt has been made to fill this lacunae.

First Report of Macrophomina phaseolina Causing Charcoal Rot in Bottle Gourd in Korea

  • Kim, Sang Gyu;Kim, Tae Bok;Lee, Oak Jin
    • The Korean Journal of Mycology
    • /
    • v.49 no.3
    • /
    • pp.399-403
    • /
    • 2021
  • Stem blight symptoms were observed in greenhouse-grown bottle gourds (Lagenaria siceraria) in Wanju, Korea. Infected plants showed leaf chlorosis and wilting; the plants eventually died with the infected leaves remaining attached, and black sclerotia formed on the diseased stem. Based on the morphological characteristics and pathogenicity results and sequence analyses of the internal transcribed spacer, translation elongation factor 1-α, β-tubulin, and calmodulin regions, the isolated fungus was Macrophomina phaseolina. This is the first report of charcoal rot in Lagenaria siceraria caused by Macrophomina phaseolina in Korea.

Macrophomina phaseolina Detected in Seeds of Sesamum indicum and It's Pathogenicity (참깨 종자에서 검출된 Macrophomina phaseolina와 그의 병원성에 관하여)

  • YU S.H.;Park J.S.
    • Korean journal of applied entomology
    • /
    • v.19 no.3 s.44
    • /
    • pp.135-140
    • /
    • 1980
  • Out of 12 seed samples of Sesamum indicum L. tested, Macrophomina phaseolina (Tassi.) Goid was detected in 7 samples for the first time in Korea. Detailed descriptions of the habit character and pycnidial and pycnospore morphology of this fungus were described. Pycnidia of this fungus were not formed on agar media but they were formed on Water Agar Leaf Media under fluorescent light. M. phaseolina caused heavy reduction in seed germination and seedling stand of sesame and produced charcoal rot symptom on potato tubers. It was also detected from over wintered plant debris and diseased seedlings in the field.

  • PDF

First Report of Charcoal Rot Caused by Macrophomina phaseolina on Peanut Plants in Korea (땅콩에서 Macrophomina phaseolina에 의한 균핵마름병 발생 보고)

  • Soo Yeon Choi;You Kyoung Lee;Chang Ok Geum;Shinhwa Kim;Hyunjung Chung;Sang-Min Kim;Yong Hoon Lee
    • The Korean Journal of Mycology
    • /
    • v.51 no.4
    • /
    • pp.383-387
    • /
    • 2023
  • Peanut plants showing mild wilt were found in fields of Iksan, Korea, in August 2021. The diseased peanut plants were collected, and the causal pathogens were isolated using potato dextrose agar (PDA) medium. The isolated IS-1 strain formed white mycelia on PDA, which turned black with age. Sclerotia were produced on the PDA and barley leaves laid on water agar 7 d after incubation at 30℃. The sequences of both the internal transcribed spacer (ITS) region and calmodulin gene of IS-1 showed a 100% similarity with that of Macrophomina phaseolina. A phylogenetic tree constructed using the ITS regions of fungal pathogens causing disease in peanut plants indicated that the IS-1 stain belongs to M. phaseolina. The inoculation of IS-1 sclerotia into peanut seedlings resulted in yellowing and wilt symptoms in aboveground plants and brown to dark rots in roots 35-40 d after inoculation. Overall, the morphological characteristics, molecular identification, and pathogenicity of IS-1 indicate that the causal pathogen is M. phaseolina. This is the first report of charcoal rot caused by M. phaseolina on peanut plants in Korea. Further study is needed to develop the control measures for charcoal rot in peanut plants.

Genetic Variability of Sorghum Charcoal Rot Pathogen (Macrophomina phaseolina) Assessed by Random DNA Markers

  • Bashasab, Rajkumar, Fakrudin;Kuruvinashetti, Mahaling S
    • The Plant Pathology Journal
    • /
    • v.23 no.2
    • /
    • pp.45-50
    • /
    • 2007
  • Genetic diversity among selected isolates of Macrophomina phaseolina, a causal agent of charcoal rot (stalk rot) disease in sorghum was studied using PCR-RAPD markers. A set of ten isolates, from ten different rabi sorghum genotypes representing two traditional sorghum growing situations viz., Dharwad- a transitional high rainfall region and Bijapur- a semi-arid low rainfall region in South India. From a set of 40 random primers tested, amplicon profiles of 15 were reproducible. A total of 149 amplicon levels, with an average of 9.9 bands per primer, were available for analysis, of which 148 were polymorphic (99.3%). It was possible to discriminate all the isolates with any of the 15 primers employed. UPGMA clustering of data indicated that the isolates shared varied levels of genetic similarity within a range of 0.14 to 0.72 similarity coefficient index and it was suggestive that grouping of isolates was not related to sampling location in anyway. A high level of genetic heterogeneity of 0.28 was recorded among the isolates.

Establishment of Pathogenicity Test Method for Macrophomina phaseolina Causing Soybean Charcoal Rot (콩균핵마름병균에 대한 병원성 검정법 확립)

  • So Hyeon An;Heung Tae Kim
    • Research in Plant Disease
    • /
    • v.29 no.1
    • /
    • pp.1-10
    • /
    • 2023
  • The establishment of a laboratory assay and a greenhouse assay was conducted for evaluating the pathogenicity of Macrophomina phaseolina causing soybean charcoal rot established. In the laboratory assay, microsclerotia and hyphae were used as inoculum. In the laboratory assays using microsclerotia as an inoculum, disease incidences of M. phaseolina NSW17-108 and HSM17-034 were higher at 35℃ than 25℃. Of the two isolates NSW17-108 and HSM17-034, the disease incidence of HSM17-034 isolated from diseased sesame is higher than that of NSW17-108 isolated from diseased soybean. When the mycelia of M. phaseolina were used as an inoculum, the disease incidence of NSW17-108 and HSM17-034 at 35℃ exceeded 80% even after only 5 days of inoculation. Even at 25℃, furthermore, that of HSM17-034 exceeded 80% 5 days later. In the pathogenicity assays at a greenhouse, toothpicks where microsclerotia were produced or microsclerotia harvested from potato dextrose agar medium were used as an inoculum. In all greenhouse assays, M. phaseolina NSW17-108 and HSM17-034 showed 40-60% of disease incidences 35-65 days after inoculation with the pathogen, depending on the inoculation method. Between the two isolates, the pathogenicity of HSM17-034 was stronger than that of NSW17-108, and this result was consistent with laboratory assay results. Since the laboratory and greenhouse test methods tested in this study have different advantages and disadvantages depending on each test method, it is thought that the test method that can meet the purpose of the study should be selected and used.

Identification and Characterization of Macrophomina phaseolina Causing Leaf Blight on White Spider Lilies (Crinum asiaticum and Hymenocallis littoralis) in Malaysia

  • Huda-Shakirah, Abd Rahim;Kee, Yee Jia;Hafifi, Abu Bakar Mohd;Azni, Nurul Nadiah Mohamad;Zakaria, Latiffah;Mohd, Masratul Hawa
    • Mycobiology
    • /
    • v.47 no.4
    • /
    • pp.408-414
    • /
    • 2019
  • Crinum asiaticum and Hymenocallis littoralis, commonly known as spider lilies are bulbous perennial and herbaceous plants that widely planted in Malaysia as ornamental. During 2015-2016, symptom of leaf blight was noticed on the hosts from several locations in Penang. The symptom appeared as irregular brown to reddish lesions surrounded by yellow halos. As the disease progressed, the infected leaves became blighted, dried, and fell off with the presence of black microsclerotia and pycnidia on the lesions parts. The present study was conducted to investigate the causal pathogen of leaf blight on C. asiaticum and H. littoralis. Based on morphological characteristics and DNA sequences of internal transcribed spacer (ITS) region and translation elongation factor 1-alpha (TEF1-α) gene, the causal pathogen was identified as Macrophomina phaseolina. Phylogenetic analysis of combined dataset of ITS and TEF1-α grouped the isolates studied with other isolates of M. phaseolina from GenBank. The grouping of the isolates was supported by 96% bootstrap value. Pathogenicity test proved the role of the fungus in causing leaf blight on both hosts.

Effect of Chemical Fertilizer-adaptive Variants, Pseudomonas aeruginosa GRC2 and Azotobacter chroococcum AC1, on Macrophomina phaseolina Causing Charcoal Rot of Brassica juncea

  • Joshi, Kishore Kumar;Kumar, Varun;Dubey, Ramesh Chand;Maheshwari, Dinesh Kumar;Bajpai, Vivek K.;Kang, Sun-Chul
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.3
    • /
    • pp.228-235
    • /
    • 2006
  • Pseudomonas aeruginosa $GRC_2$, siderophore-producing strain, inhibited growth of Macrophomina phaseolina in vitro and reduced charcoal rot in seeds of Brassica juncea in field when coated with adaptive strains. P. aeruginosa $GRC_2$ and Azotobacter chroococcum $AC_1$ produced indole-3-acetic acid and solubilized insoluble phosphate. A. chroococcum $AC_1$ fixed nitrogen asymbiotically. Urea and diammonium phosphateadaptive variant strains of P. aeruginosa and A. chroococcum strongly inhibited M. phaseolina in comparison to parental strains. Bacterization of seeds induced seed germination, seedling growth, and enhanced yield of B. juncea by 10.87% as compared to full doses of urea and diammonium phosphate. Both adaptive strains of chemical fertilizers aggressively colonized roots, showing effectiveness to growth and developments of B. juncea.

Diversity of Macrophomina phaseolina Based on Morphological and Genotypic Characteristics in Iran

  • Mahdizadeh, Valiollah;Safaie, Naser;Goltapeh, Ebrahim Mohammadi
    • The Plant Pathology Journal
    • /
    • v.27 no.2
    • /
    • pp.128-137
    • /
    • 2011
  • Fifty two Macrophomina phaseolina isolates were recovered from 24 host plant species through the 14 Iranian provinces. All isolates were confirmed to species using species-specific primers. The colony characteristics of each isolate were recorded, including chlorate phenotype, relative growth rate at $30^{\circ}C$ and $37^{\circ}C$, average size of microsclerotia, and time to microsclerotia formation. The feathery colony phenotype was the most common (63.7%) on the chlorate selective medium and represented the chlorate sensitive phenotype of the Iranian Macrophomina phaseolina population. Meantime, inter simple sequence repeats (ISSR) Markers were used to assess the genetic diversity of the fungus. Unweighted pair-group method using arithmetic means (UPGMA) clustering of data showed that isolates did not clearly differentiate to the specific group according to the host or geographical origins, however, usually the isolates from the same host or the same geographic origin tend to group nearly. Our results did not show a correlation between the genetic diversity based on the ISSR and phenotypic characteristics. Similar to the M. phaseolina populations in the other countries, the Iranian isolates were highly diverse based on the phenotypic and the genotypic characteristics investigated and needs more studies using neutral molecular tools to get a deeper insight into this complex species.

First Report of Charcoal Rot Caused by Macrophomina phaseolina on Glycine max in Korea (Macrophomina phaseolina에 의한 콩 균핵마름병(가칭) 발생)

  • Ko, Young Mi;Choi, Jiyoung;Lee, Yeong Hee;Kim, Heung Tae
    • Research in Plant Disease
    • /
    • v.26 no.1
    • /
    • pp.29-37
    • /
    • 2020
  • Stem blight symptom of soybean was severely developed in 2016 in Hwaseong and Yeoncheon. During the seedling period, the damping-off of seedlings and the brown or black spots of cotyledons were observed. After August, the leaves began to be yellowed, and partially browned areas on leaves began to develop. After September, microsclerotia began to form even on the surface of the stems that had exhibited water-soaking symptom. After mid-October of the harvest season, the epidermis of the stem was peeled off, resulting in the formation of a large number of microsclerotia in the cortex. The pathogens isolated from these symptoms were the best in mycelial growth at 32-35℃, and the formation of microsclerotia was the most at 20-28℃. The pathogen was identified as Macrophomina phaseolina through the morphological characteristics of the pathogen and the sequencing of the internal transcribed spacer region gene. In addition, when inoculated with a soybean stem using toothpicks cultured with the pathogen, the same symptoms as seen on the soybean field occurred. When the pathogen was re-isolated at the lesion site, the same pathogen was isolated and identified as Macrophomina phaseolina. Based on the results, the disease is reported as soybean charcoal rot.