DOI QR코드

DOI QR Code

Genetic Variability of Sorghum Charcoal Rot Pathogen (Macrophomina phaseolina) Assessed by Random DNA Markers

  • Published : 2007.06.30

Abstract

Genetic diversity among selected isolates of Macrophomina phaseolina, a causal agent of charcoal rot (stalk rot) disease in sorghum was studied using PCR-RAPD markers. A set of ten isolates, from ten different rabi sorghum genotypes representing two traditional sorghum growing situations viz., Dharwad- a transitional high rainfall region and Bijapur- a semi-arid low rainfall region in South India. From a set of 40 random primers tested, amplicon profiles of 15 were reproducible. A total of 149 amplicon levels, with an average of 9.9 bands per primer, were available for analysis, of which 148 were polymorphic (99.3%). It was possible to discriminate all the isolates with any of the 15 primers employed. UPGMA clustering of data indicated that the isolates shared varied levels of genetic similarity within a range of 0.14 to 0.72 similarity coefficient index and it was suggestive that grouping of isolates was not related to sampling location in anyway. A high level of genetic heterogeneity of 0.28 was recorded among the isolates.

Keywords

References

  1. Abawi, G. S. and Pastor-Corrales, M. A. 1990. Root rots of beans in Latin America and Africa: diagnosis, research methodologies and management strategies. CIAT, Calm, Colombia
  2. Ali, S. M. and Dennis, J. 1992. Host range and physiological specialization of Macrophomina phaseolina isolated from field peas in South Australia. Aust. J. Exp. Agric. 32:1121-1125 https://doi.org/10.1071/EA9921121
  3. Alvaro, M. R. A., Ricardo, V. A. Carlos, A. A. A. Valdemar, P. C. David, S. J. F. Silvana, R. R. M. Luis, C. B. Mauro, C. P. and Claudio, G. P. C. 2003. Genotypic diversity among isolates of Macrophomina phaseolina revealed by RAPD. Fitopatol. Bras. 28:279-285 https://doi.org/10.1590/S0100-41582003000300009
  4. Anahosur, K. H. and Patil, S. H. 1993. Assessment of losses in sorghum seed weight due to charcoal rot. Indian Phytopathol. 36:85-88
  5. Carlile, M. J. 1986. Genetic exchange and gene flow: Their promotion and prevention. In: Evolutionary Biological of the Fungi, ed. by A. D. M Rayner, C. M Brasier, and D. Moore, pp. 203-214. Cambridge University Press, Cambridge, UK
  6. Carter, D. A., Tran-Dinh, N., Marra, R. E. and Vera, R. E. 2004. The development of fungal genome initiative. In: Applied mycology and biotechnology, ed. by D. K Arora, G. G. Kachatourians, Vol 4. Elsevier Science
  7. Chen, W., Hoy, J. W. and Scheider, R. W. 1992. Species-specific polymorphism in transcribed ribosomal DNA of five Pythium species. Exp. Mycol. 16:22-34 https://doi.org/10.1016/0147-5975(92)90038-S
  8. Cloud, G. L. and Rupe, J. C. 1991. Preferential host selection isolates of Macrophomina phaseolina. Phytopathology 78;1563-1564
  9. Dhingra, C. D. and Sinclair, J. B. 1973. Location of Macrophomina phaseolina on soybean plants related to cultural characteristics and virulence. Phytopathology 63:934-936 https://doi.org/10.1094/Phyto-63-934
  10. Fuhlbohm, M. 1997. Genotypic diversity among Australian isolates of Macrophomina phaseolina. XX Biennial Australian Plant Pathology Society Conference, Lincoln University, New Zealand
  11. Hegedus, D. and Kachatourians, G 1996. Detection of entomopathogenic fungus Bauveria bassiana within infected migratory grasshoppers (Melanoplus sanguipiper) using polymerase chain reaction and DNA probe. J. Invertebr. Pathol. 67:21-27 https://doi.org/10.1006/jipa.1996.0004
  12. Henrion, B., Letacon, F. and Martin, F. 1992. Rapid identification of genetic variation of ectomycorrhizal fungi by amplification of ribosomal RNA genes. New Phytopathol. 122:289-298 https://doi.org/10.1111/j.1469-8137.1992.tb04233.x
  13. Jaccard, P. 1908. Nouvelles researches sur la distribution florale. Societe Vaudoise des Sciences Naturelles Bulletin. 44:223-270
  14. Jamil, F. F, Sarwar, N. Sarwar, M. Khan, J. A. Geistlinger, J. and Kahl, G 2000. Genetic and pathogenic diversity within Ascochyta rabiei (Pass.) Lab. Populations in Pakistan causing blight of chickpea (Cicer arietinum L.). Physiol. Mol. Plant. Pathol. 57:243-254 https://doi.org/10.1006/pmpp.2000.0303
  15. Jana, T., Sharma, T. R. Prasad, R. D. and Arora, D. K. 2003. Molecular characterization of Macrophomina phaseolina and Fusarium species by a single primer RAPD technique. Microbiol. Res. 158:249-257 https://doi.org/10.1078/0944-5013-00198
  16. Lee, S. B. and Taylor, J. W. 1990. Isolation of DNA from fungal mycelia and single cells. In: PCR Protocols, A guide to methods and applications, ed. by M. A. Innis, D. H. Gelfand, J. J. Sninsky, T. J. White, pp. 282-287. Academic Press, San Diego, USA
  17. Manici, L. M., Cerato, C. and Caputo, F 1995. Pathogenic and biologic variability of Macrophomina phaseolina (Tassi) Goid. isolates in different areas of sunflower cultivation in Italy. Proceedings of sunflower conference Pisa, Italy
  18. Mayek-perez, N., C. Lopez-caataneda, M. Gonzalez-Chavira, R. Garch-Espinosa, J. Acosta-Gallegos, O. M. Vega, and J. Simpson, 2001. Variability of Mexican isolates of Macrophomina phaseolina based on pathogensis and AFLP genotype. Physiol. Mol. Plant. Pathol. 59;257-264 https://doi.org/10.1006/pmpp.2001.0361
  19. Mihail, J. D. and Taylor, S. J. 1992. Interpreting variability among isolates of Macrophomina phaseolina in pathogenicity, pycnidium production and chlorate utilization. Can. J. Bot. 73: 1596-1603 https://doi.org/10.1139/b95-172
  20. Mughogho, L. K. and Pande, S. 1983. Charcoal rot of sorghum. In: Sorghum Root and Stalk Rots, A critical Review: Proceedings of the Consultative Group Discussion of Research Needs and Strategies for Control of Sorghum Root and Stalk Rot Diseases, Bellagio, Italy
  21. Reddy, M. H. 1997. VAM fungi as an agent of biological control of charcoal rot of sorghum. The Golden Jubilee International Conference on Integrated Plant Disease Management for Sustainable Agriculture, New Delhi, India
  22. Rholf, F. J. 2000. NTSYS-pc Numerical taxonomy and multivariate system, version 2.1. Exeter publishing, Setauket, USA
  23. Sambrook, J. and Russel, D. W. 2001. Molecular cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
  24. Sharma, T. R., Prachi. and Singh, B. M. 1999. Application of polymerase chain reaction in phytopathogenic microbes. Indian. J. Microbiol. 39:79-91
  25. Sharma, T. R., Jana, T. K. and Arora, D. K. 2003. Molecular characterization and genomic variability of filamentous fungi. In: Applied mycology and biotechnology, ed. by D. K. Arora, G. G. Kachatourians, Vol 4. Elsevier Science
  26. Su, G, Suh, S. O. and Schneider, R. W. 2001. Russian JS. Host specialization in the charcoal rot fungus, Macrophomina phaseolina. Phytopathology 91: 120-126 https://doi.org/10.1094/PHYTO.2001.91.2.120
  27. Subramanium, J. 1994. Variation in Macrophomina phaseolina (Tassi) Goid. causing charcoal rot of sorghum. Ph.D. Thesis, Univ. Agri. Sci., Dharwad, 30 pp
  28. Suriachandraselvan, M. and Seetharam, K. 2000. Relationship among pigment synthesis, culture media, growth and virulence of the geographical isolates Macrophomina phaseolina causing charcoal rot of sunflowers. J. Mycol. Plant Pathol. 30: 370-374
  29. Than, H., Thein, M. M. and Mint, S. S. 1991. Relationship among Rhizoctoria bataticola isolates in rise based cropping system based on colony fusion types. International Chickpea News Letter 25:29-31
  30. Virk, P. S., Brian, V. F. L. Jackson M. T. and Newbury, J. 1995. Use of RAPD for the study of diversity within plant germplasm collections. Heredity 74: 170-179 https://doi.org/10.1038/hdy.1995.25

Cited by

  1. Intraspecies diversity ofMacrophomina phaseolinain Iran vol.45, pp.8, 2012, https://doi.org/10.1080/03235408.2012.655146
  2. Determination of genetic diversity among Indian isolates of Rhizoctonia bataticola causing dry root rot of chickpea vol.96, pp.4, 2009, https://doi.org/10.1007/s10482-009-9375-y
  3. Morphological and Pathogenic Variability amongMacrophomina phaseolinaIsolates Associated with Mungbean (Vigna radiataL.) Wilczek from Pakistan vol.2014, 2014, https://doi.org/10.1155/2014/950175
  4. Genetic diversity and effect of temperature and pH on the growth of Macrophomina phaseolina isolates from sunflower fields in Hungary vol.39, pp.3, 2012, https://doi.org/10.1007/s11033-011-1094-6
  5. Discriminating microsatellites from Macrophomina phaseolina and their potential association to biological functions vol.60, pp.4, 2011, https://doi.org/10.1111/j.1365-3059.2010.02421.x
  6. Variability of United States Isolates of Macrophomina phaseolina Based on Simple Sequence Repeats and Cross Genus Transferability to Related Genera Within Botryosphaeriaceae vol.170, pp.3, 2010, https://doi.org/10.1007/s11046-010-9308-3
  7. Biodiversity in the sorghum (Sorghum bicolor L. Moench) germplasm of Pakistan vol.9, pp.2, 2010, https://doi.org/10.4238/vol9-2gmr741
  8. Emerging phytopathogenMacrophomina phaseolina: biology, economic importance and current diagnostic trends vol.38, pp.2, 2012, https://doi.org/10.3109/1040841X.2011.640977
  9. RAPD and Nuclear rDNA ITS Polymorphism Within Macrophomina phaseolina Isolated from Arid Legumes of Western Rajasthan vol.84, pp.1, 2014, https://doi.org/10.1007/s40011-013-0207-5
  10. Molecular Identification and Genetic Characterization of Macrophomina phaseolina Strains Causing Pathogenicity on Sunflower and Chickpea vol.8, 2017, https://doi.org/10.3389/fmicb.2017.01309
  11. Diversity of Macrophomina phaseolina Based on Morphological and Genotypic Characteristics in Iran vol.27, pp.2, 2011, https://doi.org/10.5423/PPJ.2011.27.2.128
  12. ) on soybean in north-western Argentina and genetic characteristics of the pathogen vol.40, pp.3, 2018, https://doi.org/10.1080/07060661.2018.1484390