• Title/Summary/Keyword: Machine Learning and Artificial Intelligence

Search Result 776, Processing Time 0.024 seconds

Artificial Intelligence: Will It Replace Human Medical Doctors? (인공지능: 미래의사의 역할을 대체할 것인가)

  • Choi, Yoon Sup
    • Korean Medical Education Review
    • /
    • v.18 no.2
    • /
    • pp.47-50
    • /
    • 2016
  • Development of artificial intelligence is expected to revolutionize today's medicine. In fact, medicine was one of the areas to which advances in artificial intelligence technology were first applied. Recently, state-of-the-art artificial intelligence, especially deep learning technology, has been actively utilized to treat cancer patients and analyze medical image data. Application of artificial intelligence has the potential to fundamentally change various aspects of medicine, including the role of human doctors, the clinical decision-making process, and even overall healthcare systems. Facing such fundamental changes is unavoidable, and we need to prepare to effectively integrate artificial intelligence into our medical system. We should re-define the role of human doctors, and accordingly, medical education should also be altered. In this article, we will discuss the current status of artificial intelligence in medicine and how we can prepare for such changes.

An Analysis of the Influence of Block-type Programming Language-Based Artificial Intelligence Education on the Learner's Attitude in Artificial Intelligence (블록형 프로그래밍 언어 기반 인공지능 교육이 학습자의 인공지능 기술 태도에 미치는 영향 분석)

  • Lee, Youngho
    • Journal of The Korean Association of Information Education
    • /
    • v.23 no.2
    • /
    • pp.189-196
    • /
    • 2019
  • Artificial intelligence has begun to be used in various parts of our lives, and recently its sphere has been expanding. However, students tend to find it difficult to recognize artificial intelligence technology because education on artificial intelligence is not being conducted on elementary school students. This paper examined the teaching programming language and artificial intelligence teaching methods, and looked at the changes in students' attitudes toward artificial intelligence technology by conducting education on artificial intelligence. To this end, education on block-type programming language-based artificial intelligence technology was provided to students' level. And we looked at students' attitudes toward artificial intelligence technology through a single group pre-postmortem. As a result, it brought about significant improvements in interest in artificial intelligence, possible access to artificial intelligence technology and the need for education on artificial intelligence technology in schools.

Application of Artificial Intelligence for the Management of Oral Diseases

  • Lee, Yeon-Hee
    • Journal of Oral Medicine and Pain
    • /
    • v.47 no.2
    • /
    • pp.107-108
    • /
    • 2022
  • Artificial intelligence (AI) refers to the use of machines to mimic intelligent human behavior. It involves interactions with humans in clinical settings, and augmented intelligence is considered as a cognitive extension of AI. The importance of AI in healthcare and medicine has been emphasized in recent studies. Machine learning models, such as genetic algorithms, artificial neural networks (ANNs), and fuzzy logic, can learn and examine data to execute various functions. Among them, ANN is the most popular model for diagnosis based on image data. AI is rapidly becoming an adjunct to healthcare professionals and is expected to be human-independent in the near future. The introduction of AI to the diagnosis and treatment of oral diseases worldwide remains in the preliminary stage. AI-based or assisted diagnosis and decision-making will increase the accuracy of the diagnosis and render treatment more precise and personalized. Therefore, dental professionals must actively initiate and lead the development of AI, even if they are unfamiliar with it.

AI-Enabled Business Models and Innovations: A Systematic Literature Review

  • Taoer Yang;Aqsa;Rafaqat Kazmi;Karthik Rajashekaran
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.6
    • /
    • pp.1518-1539
    • /
    • 2024
  • Artificial intelligence-enabled business models aim to improve decision-making, operational efficiency, innovation, and productivity. The presented systematic literature review is conducted to highlight elucidating the utilization of artificial intelligence (AI) methods and techniques within AI-enabled businesses, the significance and functions of AI-enabled organizational models and frameworks, and the design parameters employed in academic research studies within the AI-enabled business domain. We reviewed 39 empirical studies that were published between 2010 and 2023. The studies that were chosen are classified based on the artificial intelligence business technique, empirical research design, and SLR search protocol criteria. According to the findings, machine learning and artificial intelligence were reported as popular methods used for business process modelling in 19% of the studies. Healthcare was the most experimented business domain used for empirical evaluation in 28% of the primary research. The most common reason for using artificial intelligence in businesses was to improve business intelligence. 51% of main studies claimed to have been carried out as experiments. 53% of the research followed experimental guidelines and were repeatable. For the design of business process modelling, eighteen AI mythology were discovered, as well as seven types of AI modelling goals and principles for organisations. For AI-enabled business models, safety, security, and privacy are key concerns in society. The growth of AI is influencing novel forms of business.

Theories, Frameworks, and Models of Using Artificial Intelligence in Organizations

  • Alotaibi, Sara Jeza
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.11
    • /
    • pp.357-366
    • /
    • 2022
  • Artificial intelligence (AI) is the replication of human intelligence by computer systems and machines using tools like machine learning, deep learning, expert systems, and natural language processing. AI can be applied in administrative settings to automate repetitive processes, analyze and forecast data, foster social communication skills among staff, reduce costs, and boost overall operational effectiveness. In order to understand how AI is being used for administrative duties in various organizations, this paper gives a critical dialogue on the topic and proposed a framework for using artificial intelligence in organizations. Additionally, it offers a list of specifications, attributes, and requirements that organizations planning to use AI should consider.

A Case Study of Rapid AI Service Deployment - Iris Classification System

  • Yonghee LEE
    • Korean Journal of Artificial Intelligence
    • /
    • v.11 no.4
    • /
    • pp.29-34
    • /
    • 2023
  • The flow from developing a machine learning model to deploying it in a production environment suffers challenges. Efficient and reliable deployment is critical for realizing the true value of machine learning models. Bridging this gap between development and publication has become a pivotal concern in the machine learning community. FastAPI, a modern and fast web framework for building APIs with Python, has gained substantial popularity for its speed, ease of use, and asynchronous capabilities. This paper focused on leveraging FastAPI for deploying machine learning models, addressing the potentials associated with integration, scalability, and performance in a production setting. In this work, we explored the seamless integration of machine learning models into FastAPI applications, enabling real-time predictions and showing a possibility of scaling up for a more diverse range of use cases. We discussed the intricacies of integrating popular machine learning frameworks with FastAPI, ensuring smooth interactions between data processing, model inference, and API responses. This study focused on elucidating the integration of machine learning models into production environments using FastAPI, exploring its capabilities, features, and best practices. We delved into the potential of FastAPI in providing a robust and efficient solution for deploying machine learning systems, handling real-time predictions, managing input/output data, and ensuring optimal performance and reliability.

Trend in eXplainable Machine Learning for Intelligent Self-organizing Networks (지능형 Self-Organizing Network를 위한 설명 가능한 기계학습 연구 동향)

  • D.S. Kwon;J.H. Na
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.6
    • /
    • pp.95-106
    • /
    • 2023
  • As artificial intelligence has become commonplace in various fields, the transparency of AI in its development and implementation has become an important issue. In safety-critical areas, the eXplainable and/or understandable of artificial intelligence is being actively studied. On the other hand, machine learning have been applied to the intelligence of self-organizing network (SON), but transparency in this application has been neglected, despite the critical decision-makings in the operation of mobile communication systems. We describes concepts of eXplainable machine learning (ML), along with research trends, major issues, and research directions. After summarizing the ML research on SON, research directions are analyzed for explainable ML required in intelligent SON of beyond 5G and 6G communication.

Ai-Based Cataract Detection Platform Develop (인공지능 기반의 백내장 검출 플랫폼 개발)

  • Park, Doyoung;Kim, Baek-Ki
    • Journal of Platform Technology
    • /
    • v.10 no.1
    • /
    • pp.20-28
    • /
    • 2022
  • Artificial intelligence-based health data verification has become an essential element not only to help clinical research, but also to develop new treatments. Since the US Food and Drug Administration (FDA) approved the marketing of medical devices that detect mild abnormal diabetic retinopathy in adult diabetic patients using artificial intelligence in the field of medical diagnosis, tests using artificial intelligence have been increasing. In this study, an artificial intelligence model based on image classification was created using a Teachable Machine supported by Google, and a predictive model was completed through learning. This not only facilitates the early detection of cataracts among eye diseases occurring among patients with chronic diseases, but also serves as basic research for developing a digital personal health healthcare app for eye disease prevention as a healthcare program for eye health.

A Study on the Implementation of Crawling Robot using Q-Learning

  • Hyunki KIM;Kyung-A KIM;Myung-Ae CHUNG;Min-Soo KANG
    • Korean Journal of Artificial Intelligence
    • /
    • v.11 no.4
    • /
    • pp.15-20
    • /
    • 2023
  • Machine learning is comprised of supervised learning, unsupervised learning and reinforcement learning as the type of data and processing mechanism. In this paper, as input and output are unclear and it is difficult to apply the concrete modeling mathematically, reinforcement learning method are applied for crawling robot in this paper. Especially, Q-Learning is the most effective learning technique in model free reinforcement learning. This paper presents a method to implement a crawling robot that is operated by finding the most optimal crawling method through trial and error in a dynamic environment using a Q-learning algorithm. The goal is to perform reinforcement learning to find the optimal two motor angle for the best performance, and finally to maintain the most mature and stable motion about EV3 Crawling robot. In this paper, for the production of the crawling robot, it was produced using Lego Mindstorms with two motors, an ultrasonic sensor, a brick and switches, and EV3 Classroom SW are used for this implementation. By repeating 3 times learning, total 60 data are acquired, and two motor angles vs. crawling distance graph are plotted for the more understanding. Applying the Q-learning reinforcement learning algorithm, it was confirmed that the crawling robot found the optimal motor angle and operated with trained learning, and learn to know the direction for the future research.

Data Modeling for Cyber Security of IoT in Artificial Intelligence Technology (인공지능기술의 IoT 통합보안관제를 위한 데이터모델링)

  • Oh, Young-Taek;Jo, In-June
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.12
    • /
    • pp.57-65
    • /
    • 2021
  • A hyper-connected intelligence information society is emerging that creates new value by converging IoT, AI, and Bigdata, which are new technologies of the fourth industrial revolution, in all industrial fields. Everything is connected to the network and data is exploding, and artificial intelligence can learn on its own and even intellectual judgment functions are possible. In particular, the Internet of Things provides a new communication environment that can be connected to anything, anytime, anywhere, enabling super-connections where everything is connected. Artificial intelligence technology is implemented so that computers can execute human perceptions, learning, reasoning, and natural language processing. Artificial intelligence is developing advanced technologies such as machine learning, deep learning, natural language processing, voice recognition, and visual recognition, and includes software, machine learning, and cloud technologies specialized in various applications such as safety, medical, defense, finance, and welfare. Through this, it is utilized in various fields throughout the industry to provide human convenience and new values. However, on the contrary, it is time to respond as intelligent and sophisticated cyber threats are increasing and accompanied by potential adverse functions such as securing the technical safety of new technologies. In this paper, we propose a new data modeling method to enable IoT integrated security control by utilizing artificial intelligence technology as a way to solve these adverse functions.