
Yonghee LEE / Korean Journal of Artificial Intelligence 11-4 (2023) 29-34 29

ISSN: 2508-7894

KJAI website: http://acoms.kisti.re.kr/kjai

doi: http://dx.doi.org/10.24225/kjai.2023.11.4.29

A Case Study of Rapid AI Service Deployment

 - Iris Classification System

Yonghee LEE1

Received: October 24, 2023. Revised: November 08, 2023. Accepted: November 09, 2023.

Abstract

 The flow from developing a machine learning model to deploying it in a production environment suffers challenges. Efficient and

reliable deployment is critical for realizing the true value of machine learning models. Bridging this gap between development and

publication has become a pivotal concern in the machine learning community. FastAPI, a modern and fast web framework for

building APIs with Python, has gained substantial popularity for its speed, ease of use, and asynchronous capabilities. This paper

focused on leveraging FastAPI for deploying machine learning models, addressing the potentials associated with integration,

scalability, and performance in a production setting. In this work, we explored the seamless integration of machine learning models

into FastAPI applications, enabling real-time predictions and showing a possibility of scaling up for a more diverse range of use

cases. We discussed the intricacies of integrating popular machine learning frameworks with FastAPI, ensuring smooth interactions

between data processing, model inference, and API responses. This study focused on elucidating the integration of machine learning

models into production environments using FastAPI, exploring its capabilities, features, and best practices. We delved into the

potential of FastAPI in providing a robust and efficient solution for deploying machine learning systems, handling real-time

predictions, managing input/output data, and ensuring optimal performance and reliability.

Keywords: Machine Learning, Classification, Web Service, FastAPI

Major Classifications: Artificial Intelligence, Service Deployment

1. Introduction12

The field of machine learning has demonstrated

significant advancements, empowering organizations to

derive fruitful insights and make informed decisions. As

high quality data is more and more available, data-based

machine learning systems can become more and more

intelligent and be applied in real life. Conventionally, there

have been rich community supports for machine learning or

artificial intelligent systems from Python programming

* This paper was supported by Shingu College.
1 First and Corresponding Author. Professor, Department of AI

Software, Shingu College, South Korea. Email: leo@shingu.ac.kr

language society. Without fair use of publicly available

machine learning libraries, development of smart machine

learning systems appears to be unproductive and

meaningless. This fact forced the machine learning

developers confine themselves to Python language and its

libraries. However, developing competitive machine

learning systems is one thing but it is quite another to deploy

developed systems (Jain & Kumar, 2023). The flow from

developing a machine learning model to deploying it in a

production environment is often fraught with challenges.

ⓒ Copyright: The Author(s)

This is an Open Access article distributed under the terms of the Creative Commons
Attribution Non-Commercial License (http://Creativecommons.org/licenses/by-nc/4.0/)
which permits unrestricted noncommercial use, distribution, and reproduction in any
medium, provided the original work is properly cited.

30 Yonghee LEE / Korean Journal of Artificial Intelligence 11-4 (2023) 29-34

Efficient and reliable deployment is critical for realizing the

true value of machine learning models. Bridging this gap

between development and production has become a pivotal

concern in the machine learning community (Song et al.,

2023).

FastAPI, a modern and fast web framework for building

APIs with Python, has gained substantial supporters due to

its speed, ease of use, and asynchronous capabilities

(Lathkar, 2023). This paper focuses on leveraging FastAPI

for deploying machine learning models, addressing the

potentials associated with integration, scalability, and

performance in a production setting.

In this work, we explore the seamless integration of

machine learning models into FastAPI applications,

enabling real-time predictions and showing possibilities of

scaling up for a more diverse range of use cases. We discuss

the intricacies of integrating popular machine learning

frameworks with FastAPI, ensuring smooth interactions

between data processing, model inference, and API

responses.

Throughout this paper, we present a comprehensive

guide, illustrating step-by-step processes and providing

code examples to demonstrate the deployment of machine

learning models using FastAPI. Our goal is to equip

machine learning learners, developers, and data engineers

with the knowledge and tools necessary to deploy models

effectively, providing an overall outline of a development

chain for balanced perspective for development and

deployment.

The aim of this paper is to serve as a valuable

demonstrative case study for researchers, data scientists,

machine learning engineers, and developers who seek to

enhance their understanding of how FastAPI can simplify

and expedite the deployment of machine learning models in

a production environment, ultimately accelerating the

practical adoption of machine learning across diverse

industries.

At first, an iris classification problem will be discussed

briefly as a representative example of machine learning

system development. This case study was chosen mainly

because of the simplicity of problem, diversity of suggested

machine learning algorithms and high accuracy of

prediction. After showing the completeness of the iris

flowers classification, decision criteria for a proper

deploying framework will be delved into. FastAPI has been

selected to be a deploy system and necessary codes are

presented (Voron, 2022). Finally, front-end part will be

elaborated afterwards.

2. Iris Classification Problem

2.1. Problem Description

The iris classification problem is a classical problem in

the machine learning area let alone data science and

statistics field. Figure 1 shows three different species of iris

flowers, they are iris Setosa, Virginica and Versicolor

respectively. Based upon the given data of four

measurements of separate parts, a machine learning model

could figure out the correct iris species.

Figure 1 Three species of iris flower

Corresponding Python code begins with following code,

in which measurement data are read and separated for input

and label. As the original data are well preprocessed, we can

go directly to training issues.

2.2. Machine Learning Model

For this problem, many solutions haven been proposed

and verified. In this paper, the author chose three models for

illustrative and educational purposes. Those models are

Random Forest classifier, K neighbors classifier and

Google’s TensorFlow (Kang et al., 2022). Typical

applications of the above-mentioned models are quite

similar, as shown in the next code.

iris_df = pd.read_csv('iris.csv')

X = iris_df.drop('species', axis=1)
y = iris_df['species']

rfc = RandomForestClassifier()
model_rfc = rfc.fit(X, y)

kn = KNeighborsClassifier()
model_kn = kn.fit(X, y)\

model_tf =

tf.keras.models.Sequential([Dense(64,
activation='relu', input_shape=(4,)),
Dense(32, activation='relu'), Dense(3,
activation='softmax'),])

model_tf.compile(optimizer='adam',
loss='categorical_crossentropy',
metrics=['acc'])

model_tf.fit(train_data, validation_data=
(valid_data), epochs=20)

Yonghee LEE / Korean Journal of Artificial Intelligence 11-4 (2023) 29-34 31

In typical machine learning systems, training sessions

require a great amount of computing power, whereas a

trained machine predicts its output based on new input data

very quickly. For this reason, the training session and

prediction phase should be separated, and that requirement

is satisfied by saving the trained model and retrieving it for

later prediction. Among several functions for the trained

model saving, joblib library is incorporated in this case.

Once the models are trained, saved, and reloaded, we

need to check their functionality by providing sample input

data. In this code, an imaginary data of [1, 4.2, 1.4, 7] was

presented and Random Forest Classifier model predicts the

species as ‘iris setosa’ and probabilities are 0.51, 0.22 and

0.26 to be Setosa, Versicolor and Virginica respectively. So

far, the iris classification problem is simple, straightforward,

and easy to understand. One can easily grasp the overall

process of machine learning construction processes which

include data gathering, preprocessing, model design, and

training by reviewing this case.

3. Service Deployments

3.1. REST Framework

Once developing machine learning systems have

performed the training session, they can be served in a single

stand-alone software which can be downloaded and

executed on the client’s local machine. Additionally, more

recent way of software deployment is on the web service.

REST is one of the popular web architectural models to

support the web service. It can be described as an interface

between client and servers over the web with HTTP. Service

suppliers provide specific services on the pre-determined

APIs (Application Program Interface) whereas service users

access those APIs by HTTP. As there are few dependencies

between user sides (front-end) and service providers (back-

end), a complicated interoperability problem is highly

unlikely. The main advantages of REST over the web

service architecture, such as SOAP can be summarized as

follows (Kumari & Rath, 2015):

 Ease of use

 high interoperability

 flexibility

 scalability

 security

3.2. Web framework architecture

Table 1: Comparison of web framework

Features Flask Django FastAPI

Open Source Yes Yes Yes

Popular Yes Yes Yes

Launched in 2010 2005 2018

Restful API

Flask-
Marshmallow
Flask-JWT
Flask_RESTful

PythonAPI RestAPI

Web
application
based on

WSGI WSGI AGI

Support for
dynamic
HTML

NO Yes Yes

Performance Fast Slow Faster

Companies
using
framework

Reddit
Netflix
Mailgun

Instagram
Udemy
Pinterest

Uber
Yogiyo

data validation no no
built-in data
validation

convenient for
project

smaller,
medium

Large,
complicated

small, simple

community
support

rich rich smaller

Currently, most web application frameworks are based

on Java (e.g., Spring Boot) or JavaScript (e.g., Node.js).

However, as most artificial intelligence systems are built in

Python language as described in the introduction section,

developing a web framework with the same Python

language would be highly preferred (Dani et al, 2022). Table

import joblib

joblib.dump(model_rfc, './model_rfc.pkl')
joblib.dump(model_kn, './model_knn.pkl')
joblib.dump(model_tf, './model_tf.pkl')

loaded_model = joblib.load('./model_knn.pkl')

…

import numpy as np

loaded_model = joblib.load('./model_rfc.pkl')
X_new = np.array([[1, 4.2, 1.4, 7]])
prediction = loaded_model.predict(X_new)
print((dataset['target_names'][prediction]))
probability = loaded_model.predict_proba(X_new)
print(probability)

32 Yonghee LEE / Korean Journal of Artificial Intelligence 11-4 (2023) 29-34

1 compares various web application frameworks. Except for

a relatively small community, FastAPI appears to be simpler

and faster than the other Python based web frameworks

(Bansal & Ouda, 2022). Based on this observation, FastAPI

is selected to be the framework for service deployment.

3.3. Backend Architecture

Figure 2: Diagram of bad-end system with FastAPI

FastAPI is described as a modern and high-performance

web framework for developing APIs with Python. It offers

high performance on par with NodeJS and Go (Turing,

2023). It is being used by top Internet service companies. To

get started with FastAPI, Uvicorn is required. Uvicorn is an

Asynchronous Server Gateway Interface (ASGI) server

used for production (Song & Kook, 2022). FastAPI has the

advantage of handling requests asynchronously. As shown

in Figure 2, back-end server is providing REST services

over internet with various points.

3.4. Backend Development with FastAPI

The next code is the simplest FastAPI code. Once this

code starts running, the functionality of the server can be

verified by accessing http://localhost:8000/ with a web

browser and receiving “Hello”:”World” message.

Before going further with FastAPI, the iris machine learning

module should be rearranged to separate the initializing and

training period from the predicting phase as follows. It is

refactored mainly to let the training module be run at most

one-time during the overall process.

 Class IrisML is designed to support overall server

operation. IrisVarieties class is derived for the secure

communication of user input data between the front-end and

back-end system. FastAPI server programming should

accommodate the following code so that the species

prediction module can be linked by REST API pointing
“/predict”

 The method of REST architecture should be “POST”

instead of “GET” for reliable and secure transmission of

data between the client and the server side. Due to this

from fastapi
import FastAPI app = FastAPI()

@app.get("/")
def read_root():
return {"Hello": "World"}

if __name__ == '__main__':

uvicorn.run(app, host='127.0.0.1',
port=8000)

class IrisML:
def __init__(self):
self.model_fname_ = 'iris_model.pkl'
try:

self.model = joblib.load(self.model_fname_)
print("load ok")

except Exception as _:
print("training begins")
self.model = self.train_model()
joblib.dump(self.model, self.model_fname_)

def train_model(self):
iris_df = pd.read_csv('iris.csv')
X = iris_df.drop('species', axis=1)
y = iris_df['species']
model = KNeighborsClassifier(n_neighbors=5)
model = model.fit(X, y)
return model

def classify_species(self, sepal_length,
sepal_width, petal_length, petal_width):

data_in = [[sepal_length, sepal_width,
petal_length, petal_width]]

prediction = self.model.predict(data_in)
probability =

self.model.predict_proba(data_in).max()
return prediction[0], probability

class IrisVarieties(BaseModel):
sepal_length: float
sepal_width: float
petal_length: float
petal_width: float

http://localhost:8000/

Yonghee LEE / Korean Journal of Artificial Intelligence 11-4 (2023) 29-34 33

“POST” method, other API test solutions are required. A

REST API test module such as Talend API Tester is utilized

to approach “/predict” point with four input data as shown

in Figure.3.

Figure 3: Output of POST operation by REST API test tool

3.5 Inner Process of FastAPI

The inner process of FastAPI regarding RESTful service

involves the following steps:

1. Define the route and method for the API endpoint using

decorators, such as @app.post("/predict").

2. Create a function that handles the request and returns

the response. This function can have input parameters

that correspond to the data sent in the request.

3. Inside the function, perform the necessary operations,

such as calling a machine learning model for prediction

or processing the input data.

4. Return the response in JSON format, including the

predicted result and any other relevant information.

5. The client sends a request to the specified API

endpoint, such as http://localhost:8000/predict, with

the required data in the request body.

6. The FastAPI server receives the request, validates the

input data based on the defined data model (if any), and

calls the corresponding function.

7. The function processes the request, performs the

necessary computations, and generates the response.

8. The server sends the response back to the client, which

can then access the predicted result and any other

returned data.

This process enables the development and deployment

of RESTful services using FastAPI, allowing clients to

interact with the server through HTTP requests and obtain

the desired results.

3.6. Front-end Development

After normal operations of web application with FastAPI

are implemented, a development step of front-end is

straightforward. Four separate input fields are required to

accept measurements of the four parts of iris flower. By

clicking the “submit” button, the corresponding JavaScript

function assembles four numbers, converts those into JSON

format and transfers to a pre-developed server (Snodgrass&

Milkov, 2020). An essential part of the JavaScript module

for REST API call with jQuery is shown as follows:

 Figure 4. displays developed user interface by HTML.

With given input, the trained machine learning model

predicted its species as Virginica with 0.67 probability

whereas probability of being Versicolor as 37% and its

prediction results are displayed in number format and also

in a graphical way. This system can easily be extended to

include more machine learning models so that users can

compare the performances of several models available in the

market.

@app.post("/predict")
async def predict_species(iris: IrisSpecies):

pred, prob = model.classify_species(
iris.sepal_length, iris.sepal_width,
iris.petal_length, iris.petal_width)

return {"prediction": pred, "probability":
prob.tolist()}

function Send(){
var data = {

'sepal_length': sl.value,
'sepal_width': sw.value,
'petal_length': pl.value,
'petal_width': pw.value,
}

$.ajax({ type: "POST", url:
'http://localhost:8000/predict',
 headers:{ "Accept" : "application/json",
"Content-Type": "application/json", },
 data: JSON.stringify(data),

}).done(function(response)
 request done successfully
 show it to the result part of user iterface
}).fail()
 Proper error processing here

34 Yonghee LEE / Korean Journal of Artificial Intelligence 11-4 (2023) 29-34

4. Summary

In this case study, from developing a machine learning

model to publishing its service on the web, every step has

been covered. To reduce unnecessary complication of each

step, every phase had been simplified as much as possible.

We explored the seamless integration of machine learning

models into FastAPI applications, enabling efficient

predictions and showing a possibility of scaling up for more

diverse range of use cases. A comprehensive guide was

presented, covering from the beginning of an artificial

intelligence system to rapid deployment of developed

systems. This case demonstrated the big picture of machine

learning systems and the possibilities of swift deployment

of commercial AI services with simple tools such as HTML,

JavaScript, and Python. We focused on elucidating the

integration of machine learning models into production

environments using FastAPI, exploring its capabilities,

features, and best practices. We delved into the potential of

FastAPI in providing a robust and efficient solution for

deploying machine learning systems.

References

Bansal, P. and Ouda, A., (2022). Study on Integration of FastAPI

and Machine Learning for Continuous Authentication of

Behavioral Biometrics, 2022 International Symposium on

Networks, Computers and Communications (ISNCC),

Shenzhen, China, 2022, pp. 1-6, doi:

10.1109/ISNCC55209.2022.9851790.

Dani, H., Bhople, P., Waghmare, H., Munginwar, K., Patil, A.,

(2022). Review on Frameworks Used for Deployment of

Machine Learning Model, International Journal for Research

in Applied Science & Engineering Technology (IJRASET): Vol.

10 Issue II Feb 2022, doi:

https://doi.org/10.22214/ijraset.2022.40222

Jain, S. and Kumar, S., (2023). Cost Effective Generic Machine

Learning Operation: A Case Study, 2023 International

Conference on Data Science and Network Security (ICDSNS),

Tiptur, India, 2023, pp. 1-6, doi:

10.1109/ICDSNS58469.2023.10245408.

Kang, S., Choi, J., Kang, M., (2022). Classification Model and

Crime Occurrence City Forecasting Based on Random Forest

Algorithm, Korean Journal of Artificial Intelligence, 10(1),

(2022), 21-25. doi:

http://dx.doi.org/10.24225/kjai.2022.10.1.21

Kumari, S. and Rath, S. K., (2015). "Performance comparison of

SOAP and REST based Web Services for Enterprise

Application Integration," 2015 International Conference on

Advances in Computing, Communications and Informatics

(ICACCI), Kochi, India, 2015, pp. 1656-1660, doi:

10.1109/ICACCI.2015.7275851.

Lathkar, M., (2023). Getting Started with FastAPI. In: High-

Performance Web Apps with FastAPI. Apress, Berkeley, CA.

https://doi.org/10.1007/978-1-4842-9178-8_2

Snodgrass, J. E., Milkov, A., (2020). Web-based machine learning

tool that determines the origin of natural gases, Computers &

Geosciences, 145, December 2020, doi:

https://doi.org/10.1016/j.cageo.2020.104595.

(https://www.sciencedirect.com/science/article/pii/S00983004

20305793)

Song, J., Cai, J., Li, R., and Li, Y., (2023). "Design and

Implementation of Scientific Research Achievement

Transformation System," 2023 IEEE/ACIS 21st International

Conference on Software Engineering Research, Management

and Applications (SERA), Orlando, FL, USA, 2023, pp. 407-

412, doi: 10.1109/SERA57763.2023.10197696.

Song J, Kook J., (2022) Mapping Server Collaboration

Architecture Design with OpenVSLAM for Mobile

Devices. Applied Sciences. 2022; 12(7):3653.

https://doi.org/10.3390/app12073653

Turing, Python FastAPI vs Flask: A Detailed Comparison,

Retrieved from https://www.turing.com/kb/fastapi-vs-flask-a-

detailed-comparison

Voron, F., (2022). Building Data Science Applications with

FastAPI: Develop, manage, and deploy efficient machine

learning applications with Python, Packt Publishing, 2022

Figure 4: Design of a user interface on the web for
approaching machine learning server

https://doi.org/10.22214/ijraset.2022.40222
http://dx.doi.org/10.24225/kjai.2022.10.1.21
https://doi.org/10.1007/978-1-4842-9178-8_2
https://www.amazon.com/Building-Data-Science-Applications-FastAPI/dp/183763274X/ref=sr_1_1?keywords=9781837637263&linkCode=qs&qid=1696988825&s=books&sr=1-1
https://www.amazon.com/Building-Data-Science-Applications-FastAPI/dp/183763274X/ref=sr_1_1?keywords=9781837637263&linkCode=qs&qid=1696988825&s=books&sr=1-1
https://www.amazon.com/Building-Data-Science-Applications-FastAPI/dp/183763274X/ref=sr_1_1?keywords=9781837637263&linkCode=qs&qid=1696988825&s=books&sr=1-1

