• Title/Summary/Keyword: MSPS

Search Result 52, Processing Time 0.031 seconds

Design of an 1.8V 6-bit 100MS/s 5mW CMOS A/D Converter with Low Power Folding-Interpolation Techniques (저 전력 Folding-Interpolation기법을 적용한 1.8V 6-bit 100MS/s 5mW CMOS A/D 변환기의 설계)

  • Moon Jun-Ho;Hwang Sang-Hoon;Song Min-Kyu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.8 s.350
    • /
    • pp.19-26
    • /
    • 2006
  • In this paper, CMOS analog-to-digital converter (ADC) with a 6-bit 100MSPS at 1.8V is described. The architecture of the proposed ADC is based on a folding type ADC using resistive interpolation technique for low power consumption. Further, the number of folding blocks (NFB) is decreased by half of them compared to the conventional ones. A moebius-band averaging technique is adopted at the proposed ADC to improve performance. With the clock speed of 100MSPS, the ADC achieves an effective resolution bandwidth (ERBW) of 50MHz, while consuming only 4.5mW of power. The measured result of figure-of-merit (FoM) is 0.93pJ/convstep. The INL and DNL are within ${\pm}0.5 LSB$, respectively. The active chip occupies an area of $0.28mm^2$ in 0.18um CMOS technology.

Design of a 3.3V 8-bit 200MSPS CMOS Folding/Interpolation ADC (3.3V 8-bit 200MSPS CMOS Folding/Interpolation ADC의 설계)

  • Na, Yu-Sam;Song, Min-Gyu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.3
    • /
    • pp.198-204
    • /
    • 2001
  • In this paper, a 3V 8-bit 200MSPS CMOS folding / interpolation A/D Converter is proposed. It employs an efficient architecture whose FR(Folding Rate) is 8, NFB(Number of Folding Block) is 4, and IR (Interpolating Rate) is 8. For the purpose of improved SNDR by to be low input frequency, distributed track and hold circuits are included. In order to obtain a high speed and low power operation, further, a novel dynamic latch and digital encoder based on a novel delay error correction are proposed. The chip has been fabricated with a 0.35${\mu}{\textrm}{m}$ 2-poly 3-metal n-well CMOS technology. The effective chip area is 1070${\mu}{\textrm}{m}$$\times$650${\mu}{\textrm}{m}$ and it dissipates about 230mW at 3.3V power supply. The INL is within $\pm$1LSB and DNL is within $\pm$1LSB, respectively. The SNDR is about 43㏈, when the input frequency is 10MHz at 200MHz clock frequency.

  • PDF

Design of a 2.5V 10-bit 300MSPS CMOS D/A Converter (2.5V 10-bit 300MSPS 고성능 CMOS D/A 변환기의 설계)

  • Kwon, Dae-Hoon;Song, Min-Kyu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.7
    • /
    • pp.57-65
    • /
    • 2002
  • In this paper, a 2.5V 10-bit 300MSPS CMOS D/A Converter is described. The architecture of the D/A Converter is based on a current steering 8+2 segmented type, which reduces non-linearity error and other secondary effects. In order to achieve a high performance D/A Converter, a novel current cell with a low spurious deglitchnig circuit and a novel inverse thermomeer decoder are proposed. To verify the performance, it is integrated with $0.25{\mu}m$ CMOS 1-poly 5-metal technology. The effective chip area is $1.56mm^2$ and power consumption is about 84mW at 2.5V power supply. The simulation and experimental results show that the glitch energy is 0.9pVsec at fs=100MHz, 15pVsec at fs=300MHz in worst case, respectively. Further, both of INL and DNL are within ${\pm}$1.5LSB, and the SFDR is about 45dB when sampling, frequency, is 300MHz and output frequency is 1MHz.

Multispecies probiotics alter fecal short-chain fatty acids and lactate levels in weaned pigs by modulating gut microbiota

  • Oh, Ju Kyoung;Vasquez, Robie;Kim, Sang Hoon;Hwang, In-Chan;Song, Ji Hoon;Park, Jae Hong;Kim, In Ho;Kang, Dae-Kyung
    • Journal of Animal Science and Technology
    • /
    • v.63 no.5
    • /
    • pp.1142-1158
    • /
    • 2021
  • Short-chain fatty acids (SCFAs) are metabolic products produced during the microbial fermentation of non-digestible fibers and play an important role in metabolic homeostasis and overall gut health. In this study, we investigated the effects of supplementation with multispecies probiotics (MSPs) containing Bacillus amyloliquefaciens, Limosilactobacillus reuteri, and Levilactobacillus brevis on the gut microbiota, and fecal SCFAs and lactate levels of weaned pigs. A total of 38 pigs weaned at 4 weeks of age were fed either a basal diet or a diet supplemented with MSPs for 6 weeks. MSP administration significantly increased the fecal concentrations of lactate (2.3-fold; p < 0.01), acetate (1.8-fold; p < 0.05), and formate (1.4-fold; p < 0.05). Moreover, MSP supplementation altered the gut microbiota of the pigs by significantly increasing the population of potentially beneficial bacteria such as Olsenella, Catonella, Catenibacterium, Acidaminococcus, and Ruminococcaceae. MSP supplementation also decreased the abundance of pathogenic bacteria such as Escherichia and Chlamydia. The modulation of the gut microbiota was observed to be strongly correlated with the changes in fecal SCFAs and lactate levels. Furthermore, we found changes in the functional pathways present within the gut, which supports our findings that MSP modulates the gut microbiota and SCFAs levels in pigs. The results support the potential use of MSPs to improve the gut health of animals by modulating SCFAs production.

An 1.2V 8-bit 800MSPS CMOS A/D Converter with an Odd Number of Folding Block (홀수개의 폴딩 블록으로 구현된 1.2V 8-bit 800MSPS CMOS A/D 변환기)

  • Lee, Dong-Heon;Moon, Jun-Ho;Song, Min-Kyu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.7
    • /
    • pp.61-69
    • /
    • 2010
  • In this paper, an 1.2V 8b 800MSPS A/D Converter(ADC) with an odd number of folding block to overcome the asymmetrical boundary-condition error is described. The architecture of the proposed ADC is based on a cascaded folding architecture using resistive interpolation technique for low power consumption and high input frequency. The ADC employs a novel odd folding block to improve the distortion of signal linearity and to reduce the offset errors. In the digital block, furthermore, we use a ROM encoder to convert a none-$2^n$-period code into the binary code. The chip has been fabricated with an $0.13{\mu}m$ 1P6M CMOS technology. The effective chip area is $870{\mu}m\times980{\mu}m$. SNDR is 44.84dB (ENOB 7.15bit) and SFDR is 52.17dBc, when the input frequency is 10MHz at sampling frequency of 800MHz.

Design of an 1.8V 8-bit 500MSPS Cascaded-Folding Cascaded-Interpolation CMOS A/D Converter (1.8V 8-bit 500MSPS Cascaded-Folding Cascaded-Interpolation CMOS A/D 변환기의 설계)

  • Jung Seung-Hwi;Park Jae-Kyu;Hwang Sang-Hoon;Song Min-Kyu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.5 s.347
    • /
    • pp.1-10
    • /
    • 2006
  • In this paper, an 1.8V 8-bit 500MSPS CMOS A/D Converter is proposed. In order to obtain the resolution of 8bits and high-speed operation, a Cascaded-Folding Cascaded-Interpolation type architecture is chosen. For the purpose of improving SNR, Cascaded-folding Cascaded-interpolation technique, distributed track and hold are included [1]. A novel folding circuit, a novel Digital Encoder, a circuit to reduce the Reference Fluctuation are proposed. The chip has been fabricated with a $0.18{\mu}m$ 1-poly 5-metal n-well CMOS technology. The effective chip area is $1050{\mu}m{\times}820{\mu}m$ and it dissipates about 146mW at 1.8V power supply. The INL and DNL are within ${\pm}1LSB$, respectively. The SNDR is about 43.72dB at 500MHz sampling frequency.

Effect of Native and Acetylated Sweet Potato Starch on Rheological Properties of Composite Surimi Sol

  • Kim, Bae-Young;Kim, Won-Woo;Yoo, Byoung-Seung
    • Preventive Nutrition and Food Science
    • /
    • v.13 no.3
    • /
    • pp.245-248
    • /
    • 2008
  • The effects of native sweet potato starch (NSPS) and sweet potato starch modified by acetylation (MSPS) on dynamic rheological properties of surimi sols were investigated by small-deformation oscillatory measurements. Dynamic frequency sweeps of surimi sols at $10^{\circ}C$ showed that the addition of NSPS and MSPS resulted in a reduction of storage modulus (G') and loss modulus (G"). The tan $\delta$ values (ratio of G"/ G') of all samples were in the range of $0.15{\sim}0.54$ over a wide range of frequency, indicating that all surimi sols are more elastic than viscous. The characteristic G' thermograms of surimi sols during heating from 10 to $90^{\circ}C$ were influenced by the addition of starch. The tan $\delta$ values of all samples were maintained nearly constant above $45^{\circ}C$, showing that the G' is proportional to the G" irrespective of starch effects.

Design of an 1.8V 8-bit 500MSPS Low-Power CMOS D/A Converter for UWB System (UWB 시스템을 위한 1.8V 8-bit 500MSPS 저 전력 CMOS D/A 변환기의 설계)

  • Lee, Jun-Hong;Hwang, Sang-Hoon;Song, Min-Kyu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.12 s.354
    • /
    • pp.15-22
    • /
    • 2006
  • In this paper, 1.8V 8-bit 500MSPS Low-power CMOS Digital-to-Analog Converter(DAC) for UWB(Ultra Wide Band) Communication Systeme is proposed. The architecture of the DAC is based on a current steering 6+2 full matrix type which has low glitch and high linearity. In order to achieve a high speed and good performance, a current cell with a high output impedance and wide swing output range is designed. Further a thermometer decoder with same delay time and low-power switching decoder for high efficiency performance are proposed. The proposed DAC was implemented with TSMC 0.18um 1-poly 6-metal N-well CMOS technology. The measured SFDR was 49dB when the output frequency was 50MHz at 500MS/s sampling frequency. The measured INL and DNL were 0.9LSB and 0.3LSB respectively. The DAC power dissipation was 20mW and the effective chip area was $0.63mm^2$.

Design of a Small Area 12-bit 300MSPS CMOS D/A Converter for Display Systems (디스플레이 시스템을 위한 소면적 12-bit 300MSPS CMOS D/A 변환기의 설계)

  • Shin, Seung-Chul;Moon, Jun-Ho;Song, Min-Kyu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.4
    • /
    • pp.1-9
    • /
    • 2009
  • In this paper, a small area 12-bit 300MSPS CMOS Digital-to-Analog Converter(DAC) is proposed for display systems. The architecture of the DAC is based on a current steering 6+6 segmented type, which reduces non-linearity error and other secondary effects. In order to improve the linearity and glitch noise, an analog current cell using monitoring bias circuit is designed. For the purpose of reducing chip area and power dissipation, furthermore, a noble self-clocked switching logic is proposed. To verify the performance, it is fabricated with $0.13{\mu}m$ thick-gate 1-poly 6-metal N-well Samsung CMOS technology. The effective chip area is $0.26mm^2$ ($510{\mu}m{\times}510{\mu}m$) with 100mW power consumption. The measured INL (Integrated Non Linearity) and DNL (Differential Non Linearity) are within ${\pm}3LSB$ and ${\pm}1LSB$, respectively. The measured SFDR is about 70dB, when the input frequency is 15MHz at 300MHz clock frequency.

An Efficient Integer Division Algorithm for High Speed FPGA (고속 FPGA 구현에 적합한 효율적인 정수 나눗셈 알고리즘)

  • Hong, Seung-Mo;Kim, Chong-Hoon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.2
    • /
    • pp.62-68
    • /
    • 2007
  • This paper proposes an efficient integer division algorithm for high speed FPGAs' which support built-in RAMs' and multipliers. The integer division algorithm is iterative with RAM-based LUT and multipliers, which minimizes the usage of logic fabric and connection resources. Compared with some popular division algorithms such as division by subtraction or division by multiply-subtraction, the number of iteration is much smaller, so that very low latency can be achieved with pipelined implementations. We have implemented our algorithm in the Xilinx virtex-4 FPGA with VHDL coding and have achieved 300MSPS data rate in 17bit integer division. The algorithm used less than 1/6 of logic slices, 1/4 of the built-in multiply-accumulation units, and 1/3 of the latencies compared with other popular algorithms.